6533b7d9fe1ef96bd126c3bc
RESEARCH PRODUCT
Molecular signatures of silencing suppression degeneracy from a complex RNA virus
Silvia Giménez-santamarinaJosep Navarro-lópezGuillermo RodrigoGuillermo RodrigoFernando MartínezJavier Sanchez-vicenteNeus Gómez-muñozSilvia AmbrósJosé-antonio Daròssubject
0106 biological sciences0301 basic medicineProteomicsCitrusInteraction NetworksPathogenesisPlant Sciencemedicine.disease_causePathology and Laboratory Medicine01 natural sciencesInteractomeBiochemistryBimolecular fluorescence complementationRNA interferenceRNA silencing supressorsCitrus tristeza virusMedicine and Health SciencesDegeneracy (biology)Protein Interaction MapsBiology (General)H20 Plant diseasesPlant ProteinsEcologybiologyPlant virusesEukaryotaArgonautePlantsSmall interfering RNANucleic acidsRNA silencingComputational Theory and MathematicsGenetic interferenceExperimental Organism SystemsModeling and SimulationProteomeArgonaute ProteinsHost-Pathogen InteractionsRNA ViralEpigeneticsResearch ArticleClosterovirusRNA virusViral proteinQH301-705.5Arabidopsis ThalianaPlant PathogensComputational biologyGenome ViralBrassicaResearch and Analysis MethodsModels BiologicalPlant Viral Pathogens03 medical and health sciencesCellular and Molecular NeuroscienceViral ProteinsModel OrganismsPlant and Algal ModelsTobaccomedicineGeneticsGenomesNon-coding RNAProtein InteractionsMolecular signaturesMolecular BiologyEcology Evolution Behavior and SystematicsPlant DiseasesHost Microbial InteractionsBiology and life sciencesMass spectrometryOrganismsComputational BiologyProteinsRNA virusPlant Pathologybiology.organism_classificationGene regulationRepressor Proteins030104 developmental biologyU30 Research methodsAnimal StudiesRNAGene expression010606 plant biology & botanyF30 Plant genetics and breedingdescription
As genomic architectures become more complex, they begin to accumulate degenerate and redundant elements. However, analyses of the molecular mechanisms underlying these genetic architecture features remain scarce, especially in compact but sufficiently complex genomes. In the present study, we followed a proteomic approach together with a computational network analysis to reveal molecular signatures of protein function degeneracy from a plant virus (as virus-host protein-protein interactions). We employed affinity purification coupled to mass spectrometry to detect several host factors interacting with two proteins of Citrus tristeza virus (p20 and p25) that are known to function as RNA silencing suppressors, using an experimental system of transient expression in a model plant. The study was expanded by considering two different isolates of the virus, and some key interactions were confirmed by bimolecular fluorescence complementation assays. We found that p20 and p25 target a common set of plant proteins including chloroplastic proteins and translation factors. Moreover, we noted that even specific targets of each viral protein overlap in function. Notably, we identified argonaute proteins (key players in RNA silencing) as reliable targets of p20. Furthermore, we found that these viral proteins preferentially do not target hubs in the host protein interactome, but elements that can transfer information by bridging different parts of the interactome. Overall, our results demonstrate that two distinct proteins encoded in the same viral genome that overlap in function also overlap in their interactions with the cell proteome, thereby highlighting an overlooked connection from a degenerate viral system.
year | journal | country | edition | language |
---|---|---|---|---|
2021-06-01 |