Molecular signatures of silencing suppression degeneracy from a complex RNA virus
As genomic architectures become more complex, they begin to accumulate degenerate and redundant elements. However, analyses of the molecular mechanisms underlying these genetic architecture features remain scarce, especially in compact but sufficiently complex genomes. In the present study, we followed a proteomic approach together with a computational network analysis to reveal molecular signatures of protein function degeneracy from a plant virus (as virus-host protein-protein interactions). We employed affinity purification coupled to mass spectrometry to detect several host factors interacting with two proteins of Citrus tristeza virus (p20 and p25) that are known to function as RNA sil…
Virus-host interactome: Putting the accent on how it changes
[EN] Viral infections are extremely complex processes that could only be well understood by precisely characterizing the interaction networks between the virus and the host components. In recent years, much effort has gone in this directionwith the aimof unveiling themolecular basis of viral pathology. These networks are mostly formed by viral and host proteins, and are expected to be dynamic bothwith time and space (i.e., with the progression of infection, as well as with the virus and host genotypes; what we call plastodynamic). This largely overlooked spatio-temporal evolution urgently calls for a change both in the conceptual paradigms and experimental techniques used so far to characte…
CRISPR-mediated strand displacement logic circuits with toehold-free DNA
DNA nanotechnology, and DNA computing in particular, has grown extensively over the past decade to end with a variety of functional stable structures and dynamic circuits. However, the use as designer elements of regular DNA pieces, perfectly complementary double strands, has remained elusive. Here, we report the exploitation of CRISPR-Cas systems to engineer logic circuits based on isothermal strand displacement that perform with toehold-free double-stranded DNA. We designed and implemented molecular converters for signal detection and amplification, showing good interoperability between enzymatic and nonenzymatic processes. Overall, these results contribute to enlarge the repertoire of su…
Synthetic conversion of leaf chloroplasts into carotenoid-rich plastids reveals mechanistic basis of natural chromoplast development
Plastids, the defining organelles of plant cells, undergo physiological and morphological changes to fulfill distinct biological functions. In particular, the differentiation of chloroplasts into chromoplasts results in an enhanced storage capacity for carotenoids with industrial and nutritional value such as beta-carotene (provitamin A). Here, we show that synthetically inducing a burst in the production of phytoene, the first committed intermediate of the carotenoid pathway, elicits an artificial chloroplast-to-chromoplast differentiation in leaves. Phytoene overproduction initially interferes with photosynthesis, acting as a metabolic threshold switch mechanism that weakens chloroplast i…
Processing of RNAs of the Family Avsunviroidae in Chlamydomonas reinhardtii Chloroplasts
ABSTRACT The family Avsunviroidae comprises four viroid species with the ability to form hammerhead ribozymes that mediate self-cleavage of the multimeric plus and minus strands resulting from replication in the chloroplast through a symmetric rolling-circle mechanism. Research on these RNAs is restricted by their host range, which is limited to the plants wherein they were initially identified and some closely related species. Here we report cleavage and ligation in transplastomic Chlamydomonas reinhardtii expressing plus- and minus-strand dimeric transcripts of representative members of the family Avsunviroidae . Despite the absence of viroid RNA-RNA transcription, the C. reinhardtii -bas…
Boolean computation in plants using post-translational genetic control and a visual output signal
[EN] Due to autotrophic growing capacity and extremely rich secondary metabolism, plants should be preferred targets of synthetic biology. However, developments in plants usually run below those in other taxonomic groups. In this work we engineered genetic circuits capable of logic YES, OR and AND Boolean computation in plant tissues with a visual output signal. The circuits, which are deployed by means of Agrobacterium tumefaciens, perform with the conditional activity of the MYB transcription factor Roseal from Antirrhinum majus inducing the accumulation of anthocyanins, plant endogenous pigments that are directly visible to the naked eye or accurately quantifiable by spectrophotometric a…
Model-based design of RNA hybridization networks implemented in living cells
[EN] Synthetic gene circuits allow the behavior of living cells to be reprogrammed, and non-coding small RNAs (sRNAs) are increasingly being used as programmable regulators of gene expression. However, sRNAs (natural or synthetic) are generally used to regulate single target genes, while complex dynamic behaviors would require networks of sRNAs regulating each other. Here, we report a strategy for implementing such networks that exploits hybridization reactions carried out exclusively by multifaceted sRNAs that are both targets of and triggers for other sRNAs. These networks are ultimately coupled to the control of gene expression. We relied on a thermo-dynamic model of the different stable…
Mutational analysis of eggplant latent viroid RNA processing in Chlamydomonas reinhardtii chloroplast.
Viroids of the family Avsunviroidae, such as eggplant latent viroid (ELVd), contain hammerhead ribozymes and replicate in the chloroplasts of the host plant through an RNA-based symmetrical rolling-circle mechanism in which oligomeric RNAs of both polarity are processed to monomeric linear RNAs (by cleavage) and to monomeric circular RNAs (by ligation). Using an experimental system consisting of transplastomic lines of the alga Chlamydomonas reinhardtii, a mutational analysis of sequence and structural elements in the ELVd molecule that are involved in transcript processing in vivo in a chloroplastic context was carried out. A collection of six insertion and three deletion ELVd mutants was …
Ultradeep Sequencing Analysis of Population Dynamics of Virus Escape Mutants in RNAi-Mediated Resistant Plants
Plant artificial micro-RNAs (amiRs) have been engineered to target viral genomes and induce their degradation. However, the exceptional evolutionary plasticity of RNA viruses threatens the durability of the resistance conferred by these amiRs. It has recently been shown that viral populations not experiencing strong selective pressure from an antiviral amiR may already contain enough genetic variability in the target sequence to escape plant resistance in an almost deterministic manner. Furthermore, it has also been shown that viral populations exposed to subinhibitory concentrations of the antiviral amiR speed up this process. In this article, we have characterized the molecular evolutiona…