Search results for " SIMULATIONS"

showing 10 items of 243 documents

High-temperature X-ray absorption spectroscopy study of thermochromic copper molybdate

2019

Financial support provided by Scientific Research Project for Students and Young Researchers Nr. SJZ/2017/5 and SJZ/2018/1 realized at the Institute of Solid State Physics, University of Latvia is greatly acknowledged. The work was also supported by philanthropist MikroTik and administrated by the University of Latvia Foundation . The experiment at the Elettra synchrotron was performed within the project No. 20150303 .

Materials sciencePolymers and PlasticsAbsorption spectroscopyAnalytical chemistrychemistry.chemical_element02 engineering and technologyMolybdate01 natural sciences7. Clean energychemistry.chemical_compound0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]010302 applied physicsReverse Monte Carlo simulationsX-ray absorption spectroscopyThermochromismExtended X-ray absorption fine structureCuMoO4Metals and AlloysAtmospheric temperature range021001 nanoscience & nanotechnologyCopperXANESXANESElectronic Optical and Magnetic MaterialsEXAFSchemistryMolybdenumCeramics and Composites0210 nano-technologyActa Materialia
researchProduct

Thermal disorder and correlation effects in anti-perovskite-type copper nitride

2017

This work has been supported by the Latvian National Research Program IMIS2. The EXAFS experiment has been financed from the European Community's Seventh Framework Programme under grant agreement No. 226716 (Project I-20100098 EC). J.T. also gratefully acknowledges support from the National Science Foundation under the DMREF program Grant No. CHE-1534184.

Materials sciencePolymers and Plasticschemistry.chemical_element02 engineering and technologyReverse Monte CarloCrystal structureNitride01 natural scienceschemistry.chemical_compoundCondensed Matter::Materials ScienceRhenium trioxideddc:670Condensed Matter::Superconductivity0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]010306 general physicsAnisotropyPerovskite (structure)Reverse Monte Carlo simulationsExtended X-ray absorption fine structureQuantitative Biology::Neurons and CognitionCu3NLattice dynamicsMetals and Alloys021001 nanoscience & nanotechnologyCopper3. Good healthElectronic Optical and Magnetic MaterialsCrystallographyEXAFSchemistryCeramics and Composites0210 nano-technology
researchProduct

Monte Carlo analysis of polymer translocation with deterministic and noisy electric fields

2012

AbstractPolymer translocation through the nanochannel is studied by means of a Monte Carlo approach, in the presence of a static or oscillating external electric voltage. The polymer is described as a chain molecule according to the two-dimensional “bond fluctuation model”. It moves through a piecewise linear channel, which mimics a nanopore in a biological membrane. The monomers of the chain interact with the walls of the channel, modelled as a reflecting barrier. We analyze the polymer dynamics, concentrating on the translocation time through the channel, when an external electric field is applied. By introducing a source of coloured noise, we analyze the effect of correlated random fluct…

Materials scienceQC1-999transport dynamics of biomoleculeMonte Carlo methodpolymer moleculespolymer moleculeGeneral Physics and AstronomyQuantitative Biology::Subcellular ProcessesPiecewise linear functionmonte carlo simulationsnoise in biological systemChain (algebraic topology)Electric fieldStatistical physicschemistry.chemical_classificationPhysics::Biological PhysicsQuantitative Biology::Biomoleculestransport dynamics of biomoleculesPhysicsPolymernoise in biological systemsNanoporechemistryChemical physicsCommunication channelVoltageOpen Physics
researchProduct

Analysis of multipactor RF breakdown in a waveguide containing a transversely magnetized ferrite

2016

In this paper, the multipactor RF breakdown in a parallel-plate waveguide partially filled with a ferrite slab magnetized normal to the metallic plates is studied. An external magnetic field is applied along the vertical direction between the plates in order to magnetize the ferrite. Numerical simulations using an in-house 3-D code are carried out to obtain the multipactor RF voltage threshold in this kind of structures. The presented results show that the multipactor RF voltage threshold at certain frequencies becomes considerably lower than for the corresponding classical metallic parallel-plate waveguide with the same vacuum gap

Materials scienceSaturation magnetizationElectromagnetic waveguidesPhysics::Instrumentation and DetectorsIn-house 3D codeTransversely magnetized ferrite01 natural sciencesVacuum gap010305 fluids & plasmasExternal magnetic fieldOptics0103 physical sciencesVertical directionRadio frequencyTEORIA DE LA SEÑAL Y COMUNICACIONESParallel-plate waveguideElectronic engineeringNumerical simulationsElectrical and Electronic EngineeringMagnetic anisotropyElectric breakdownMultipactor RF breakdown analysis010302 applied physicsbusiness.industryParallel plate waveguidesFerrite slabRF breakdownMicrowave switchesVacuum gapElectronic Optical and Magnetic MaterialsMagnetic fieldMultipactor RF voltage thresholdMagnetic fieldMetallic platesMagnetic fieldsSlabFerrite (magnet)Ferrite waveguidesFerrite devicesMultipactor effectbusinessVoltageNumerical analysis
researchProduct

Electronic properties of carbon nanotubes under torsion

2012

A computationally-effective approach for calculating the electromechanical behavior of SWNTs and MWNTs of the dimensions used in nano-electronic devices has been developed. It is a mixed finite element-tight-binding code carefully designed to realize significant time saving in calculating deformation-induced changes in electrical transport properties of the nanotubes. The effect of the MWNT diameter and chirality on the conductance after mechanical deformation was investigated. In case of torsional deformation results revealed the conductance of MWNTs to depend strongly on the diameter, since bigger MWNTs reach much earlier the buckling load under torsion their electrical conductivity chang…

Materials scienceTorsion (mechanics)ConductanceNanotechnologyGeneral ChemistryCarbon nanotubelaw.inventionSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineZigzagBucklinglawElectrical resistivity and conductivitycarbon nanotubes Numerical simulations Electromechanical behaviorGeneral Materials ScienceComposite materialElectrical conductorElectronic properties
researchProduct

CFD prediction of bubble behavior in two-dimensional gas-solid fluidized beds

2009

This work focuses on the computational fluid dynamics (CFD) simulation of a laboratory-scale, two-dimensional fluidized bed and the relevant experiments in order to validate the prediction capability of the adopted codes and models. Both experimental and computational quantitative data were analyzed by means of an original digital image analysis technique, allowing for coherent comparison of computational and experimental results. In particular, this work analyzes the capability of the CFD simulations in predicting the fluctuating behavior of bubbling fluidized beds by means of frequency analysis of bubble-related phenomena.

Materials sciencebusiness.industryBubbleGeneral EngineeringMechanicsComputational fluid dynamicsCondensed Matter PhysicsAnnealing (glass)Physics::Fluid DynamicsModeling and SimulationDigital image analysisTwo-dimensional gasdigital image analysisFluidizationbusinessBond fluctuation modelBubbling fluidized bedBubbling fluidized bedCFD SIMULATIONS
researchProduct

Numerical 2D And 3D Simulations of a Spherical Fabry–Pérot Resonator for Application as a Reference Cavity for Laser Frequency Stabilisation

2015

Abstract We report on the results of a numerical study of deformations of a spherical Fabry-Pérot cavity that can be used for laser frequency stabilisation. It is demonstrated that for a precise simulation of the cavity deformations a 3D model has to be used instead of a simpler 2D model, which employs simulation on the symmetry plane of the cavity. To lower the sensitivity to environmental perturbations, it is suggested to use a material with a low density and a high Young’s modulus. We also show that the mechanical resonance frequencies of the cavity are mainly determined by the size of the cavity.

Materials sciencebusiness.industryPhysicsQC1-999General Engineeringlaser frequency stabilisationPhysics::OpticsGeneral Physics and AstronomyReference cavityfabry-pérot cavityResonatorOpticsnumerical simulations.Physics::Accelerator PhysicsLaser frequencybusinessFabry–Pérot interferometerLatvian Journal of Physics and Technical Sciences
researchProduct

Advanced approach to the local structure reconstruction and theory validation on the example of the W L 3 -edge extended x-ray absorption fine struct…

2018

The authors gratefully acknowledge the assistance of the ELETTRA XAFS beamline staff members during the EXAFS experiment No 20150303. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Materials sciencechemistry.chemical_elementFOS: Physical sciences02 engineering and technologyEdge (geometry)Tungsten01 natural sciencesLocal structureTungstenCondensed Matter::Materials Science0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]General Materials Science010306 general physicsReverse Monte Carlo simulationsCondensed Matter - Materials ScienceExtended X-ray absorption fine structureMolecular dynamics simulationsMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnologyCondensed Matter PhysicsComputer Science ApplicationsComputational physicsEXAFSchemistryMechanics of MaterialsModeling and Simulation0210 nano-technologyModelling and Simulation in Materials Science and Engineering
researchProduct

Limits of stability in supported graphene nanoribbons subject to bending

2016

Graphene nanoribbons are prone to in-plane bending even when supported on flat substrates. However, the amount of bending that ribbons can stably withstand remains poorly known. Here, by using molecular dynamics simulations, we study the stability limits of 0.5-1.9 nm wide armchair and zigzag graphene nanoribbons subject to bending. We observe that the limits for maximum stable curvatures are below ~10 deg/nm, in case the bending is externally forced and the limit is caused by buckling instability. Furthermore, it turns out that the limits for maximum stable curvatures are also below ~10 deg/nm, in case the bending is not forced and the limit arises only from the corrugated potential energy…

Materials sciencestability limitsFOS: Physical sciencesNanotechnology02 engineering and technologyLimits of stability01 natural sciencesPotential energy landscapeMolecular dynamicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesElasticity (economics)010306 general physicsta114Condensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsmolecular dynamics simulationsBuckling instabilitybending021001 nanoscience & nanotechnologyZigzagPure bending0210 nano-technologyGraphene nanoribbonsgraphene nanoribbonsPhysical Review B
researchProduct

Competing species system as a qualitative model of radiation therapy

2016

To examine complex features of tumor dynamics we analyze a competing-species lattice model that takes into account the competition for nutrients or space as well as interaction with therapeutic factors such as drugs or radiation. Our model might be interpreted as a certain prey–predator system having three trophic layers: (i) the basal species that might be interpreted as nutrients; (ii) normal and tumor cells that consume nutrients, and (iii) therapeutic factors that might kill either nutrient, normal or tumor cells. Using a wide spectrum of parameters we examined survival of our species and tried to identify the corresponding dynamical regimes. It was found that the radiotherapy influence…

Mean-field approximationPrey–predator systemsTumor growthMonte Carlo simulationsPhysica A : Statistical Mechanics and Its Applications
researchProduct