Search results for " SP"
showing 10 items of 41282 documents
High-frequency EPR study on Cu4Cu- and Co4Co-metallacrown complexes
2019
Abstract High-frequency/high-field electron paramagnetic resonance studies on two homonuclear 12-MC-4 metallacrown complexes Cu4Cu and Co4Co are presented. For Cu4Cu, our data imply axial-type g-anisotropy with g x = 2.03 ± 0.01 , g y = 2.04 ± 0.01 , and g z = 2.23 ± 0.01 , yielding g = 2.10 ± 0.02 . No significant zero field splitting (ZFS) of the ground state mode is observed. In Co4Co, we find a m S = ± 3 / 2 ground state with g = 2.66 . The data suggest large anisotropy D of negative sign.
Commissioning of the vacuum system of the KATRIN Main Spectrometer
2016
The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. An integral energy analysis will be performed by an electro-static spectrometer (``Main Spectrometer''), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m[superscript 3], and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips ha…
Broadband microwave emission spectrum associated with kinetic instabilities in minimum-B ECR plasmas
2017
Plasmas of electron cyclotron resonance ion sources (ECRISs) are prone to kinetic instabilities due to the resonant heating mechanism resulting in anisotropic electron velocity distribution. Frequently observed periodic oscillations of extracted ion beam current in the case of high plasma heating power and/or strong magnetic field have been proven to be caused by cyclotrontype instabilities leading to a notable reduction and temporal variation of highly charged ion production. Thus, investigations of such instabilities and techniques for their suppression have become important topics in ECRIS research. The microwave emission caused by the instabilities contains information on the electron e…
Time resolved measurements of hydrogen ion energy distributions in a pulsed 2.45 GHz microwave plasma
2017
A plasma diagnostic study of the Ion Energy Distribution Functions (IEDFs) of H+, H+2H2+, and H+3H3+ ions in a 2.45 GHz hydrogen plasma reactor called TIPS is presented. The measurements are conducted by using a Plasma Ion Mass Spectrometer with an energy sector and a quadrupole detector from HIDEN Analytical Limited in order to select an ion species and to measure its energy distribution. The reactor is operated in the pulsed mode at 100 Hz with a duty cycle of 10% (1 ms pulse width). The IEDFs of H+, H+2H2+, and H+3H3+ are obtained each 5 μs with 1 μs time resolution throughout the entire pulse. The temporal evolution of the plasma potential and ion temperature of H+ is derived from the d…
Charge breeding at GANIL: Improvements, results, and comparison with the other facilities
2019
International audience; The 1+/n+ method, based on an ECRIS charge breeder (CB) originally developed at the LPSC laboratory, is now implemented at GANIL for the production of Radioactive Ion Beams (RIBs). Prior to its installation in the middle of the low energy beam line of the SPIRAL1 facility, the 1+/n+ system CB has been modified based on the experiments performed on the CARIBU Facility at Argone National Laboratory. Later, it has been tested at the 1+/n+ LPSC test bench to validate its operation performances. Charge breeding efficiencies as well as charge breeding times have been measured for noble gases and alkali elements. The commissioning phase started at GANIL in the second half-y…
Simulations on time-of-flight ERDA spectrometer performance
2016
The performance of a time-of-flight spectrometer consisting of two timing detectors and an ionization chamber energy detector has been studied using Monte Carlo simulations for the recoil creation and ion transport in the sample and detectors. The ionization chamber pulses have been calculated using Shockley-Ramo theorem and the pulse processing of a digitizing data acquisition setup has been modeled. Complete time-of-flight–energy histograms were simulated under realistic experimental conditions. The simulations were used to study instrumentation related effects in coincidence timing and position sensitivity, such as background in time-of-flight–energy histograms. Corresponding measurement…
Controlled Cytotoxicity of Plasma Treated Water Formulated By Open-air Hybrid Mode Discharge
2017
Plasma‐activated liquids (PAL) attract increasing interest with demonstrated biological effects. Plasma exposure in air produces stable aqueous reactive species which can serve as chemical diagnostics of PAL systems. Here, we tailor aqueous reactive species inside plasma‐activated water (PAW) through treating water with AC air spark and glow discharges in contact with water. Chemical probing demonstrated species specificity between two types of PAW. Spark discharge PAW contains urn:x-wiley:14381656:media:ppap201600207:ppap201600207-math-0006 and urn:x-wiley:14381656:media:ppap201600207:ppap201600207-math-0007, while urn:x-wiley:14381656:media:ppap201600207:ppap201600207-math-0008and urn:x-w…
Investigation on partial discharges in HVDC cables after polarity reversal events
2020
Due to the accumulation of space charge inside the insulating layer of HVDC cables, the electric field under load conditions may be altered compared to what is established in HVAC cables. For example, a high thermal gradient leads to the inversion of the electric field pattern until the maximum value is reached in proximity of the dielectric-semicon interfaces. These maximum values can be further increased due to transient overvoltages and polarity reversal events until reaching electric field values higher than the rated ones. The main goal of this research is to investigate the possibility that, during these transient phenomena, conditions are created that favor the occurrence of partial …
Defect-induced blue luminescence of hexagonal boron nitride
2016
Abstract Native defect-induced photoluminescence around 400 nm (blue luminescence - BL) was studied in hBN materials with different size and various origins. The following spectral characterizations were used: spectra of luminescence and its excitation, luminescence dependence on temperature, luminescence kinetics, optically stimulated luminescence and infrared absorption. It was found, that the BL is characteristic for all these materials, which were studied. The BL forms a wide, asymmetric and phonon-assisted emission band at 380 nm. This luminescence can be excited either through the exciton processes, or with light from two defect-induced excitation bands at 340 nm and 265 nm. It was fo…
Luminescence of polymorphous SiO2
2016
Abstract The luminescence of self-trapped exciton (STE) was found and systematically studied in tetrahedron structured silica crystals (α-quartz, coesite, cristobalite) and glass. In octahedron structured stishovite only host material defect luminescence was observed. It strongly resembles luminescence of oxygen deficient silica glass and γ or neutron irradiated α-quartz. The energetic yield of STE luminescence for α-quartz and coesite is about 20% of absorbed energy and about 5(7)% for cristobalite. Two types of STE were found in α-quartz. Two overlapping bands of STEs are located at 2.5–2.7 eV. The model of STE is proposed as Si–O bond rupture, relaxation of created non-bridging oxygen (N…