Search results for " SP"

showing 10 items of 41282 documents

Irradiation effects in CaF2probed by Raman scattering

2016

The formation conditions and dynamics of Ca colloids and point defects that appear in irradiated single crystals of CaF2 were investigated by Raman spectroscopy. The intensity changes in the Raman spectra because of the presence of different concentrations of point defects and Ca colloids that emerged in CaF2 after irradiation with 2.2 GeV Au ions were used to study their distribution and stability under illumination with three laser wavelengths (473, 532 and 633 nm) at different output powers (2 to 200 mW). A damage saturation at a fluence of 6 × 1011 ion cm−2 was observed. The dependence of the spectral changes on the ion fluence can be described by a core/halo damage cross-section model.…

010302 applied physicsChemistryAnalytical chemistry02 engineering and technology021001 nanoscience & nanotechnologyLaser01 natural sciencesCrystallographic defectMolecular physicsFluencelaw.inventionIonsymbols.namesakeSwift heavy ionlaw0103 physical sciencessymbolsGeneral Materials ScienceIrradiation0210 nano-technologyRaman spectroscopySpectroscopyRaman scatteringJournal of Raman Spectroscopy
researchProduct

Numerical Procedures and their Practical Application in PV Module Analyses. Part IV: Atmospheric Transparency Parameters - Application

2020

Abstract The presented article relates to aspects of PV module testing using natural sunlight in outdoor conditions. It is a continuation of the article Part III: parameters of atmospheric transparency - determining and correlations. This article discusses the practical application of the indexes: atmosphere purity - k Tm , diffused component content - k s/o , beam clear sky index - K b - in testing various modules in outdoor conditions. Their influence on the conversion of modules made from various absorbers and various technologies is demonstrated. Their practical application in module testing in outdoor conditions is described and it - has been demonstrated that the results of the analys…

010302 applied physicsChemistrybusiness.industry020209 energysolar energyAtmospheric transparencysolar radiation spectrum02 engineering and technologysky clearness indexdiffused component content index01 natural sciencesEnergy engineeringPart iiiphotovoltaicsComponent (UML)0103 physical sciences0202 electrical engineering electronic engineering information engineeringGeneral Materials ScienceProcess engineeringbusinessEcological Chemistry and Engineering S
researchProduct

FPGA based digital lock-in amplifier for fNIRS systems

2018

Lock-In Amplifiers (LIA) represent a powerful technique helping to improve signals detectability when low signal to noise ratios are experienced. Continuous Wave functional Near Infrared Spectroscopy (CW-fNIRS) systems for e-health applications usually suffer of poor detection due to the presence of strong attenuations of the optical recovering path and therefore small signals are severely dipped in a high noise floor. In this work a digital LIA system, implemented on a Zynq® Field Programmable Gate Array (FPGA), has been designed and tested to verify the quality of the developed solution, when applied in fNIRS systems. Experimental results have shown the goodness of the proposed solutions.

010302 applied physicsComputer scienceAmplifier0206 medical engineeringLock-in amplifierDigital lock-in amplifier02 engineering and technology020601 biomedical engineering01 natural sciencesNoise floorSettore ING-INF/01 - ElettronicaSilicon photomultiplier (SiPM)Quality (physics)0103 physical sciencesElectronic engineeringContinuous waveFunctional near-infrared spectroscopyField-programmable gate arrayFpgaFunctional near-infrared spectroscopy
researchProduct

Amorphous ultra-wide bandgap ZnOx thin films deposited at cryogenic temperatures

2020

Crystalline wurtzite zinc oxide (w-ZnO) can be used as a wide band gap semiconductor for light emitting devices and for transparent or high temperature electronics. The use of amorphous zinc oxide (a-ZnO) can be an advantage in these applications. In this paper we report on X-ray amorphous a-ZnOx thin films (~500 nm) deposited at cryogenic temperatures by reactive magnetron sputtering. The substrates were cooled by a nitrogen flow through the copper substrate holder during the deposition. The films were characterized by X-ray diffraction (XRD), Raman, infrared, UV-Vis-NIR spectroscopies, and ellipsometry. The a-ZnOx films on glass and Ti substrates were obtained at the substrate holder temp…

010302 applied physicsCondensed Matter - Materials ScienceMaterials sciencebusiness.industryBand gapGeneral Physics and AstronomyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologySubstrate (electronics)021001 nanoscience & nanotechnology01 natural sciencesAmorphous solidsymbols.namesakeSputteringEllipsometry0103 physical sciencessymbolsOptoelectronicsFourier transform infrared spectroscopyThin film0210 nano-technologybusinessRaman spectroscopy
researchProduct

Dielectric response of BaTiO3 electronic states under AC fields via microsecond time-resolved X-ray absorption spectroscopy

2021

Abstract For the first time, the dielectric response of a BaTiO 3 thin film under an AC electric field is investigated using microsecond time-resolved X-ray absorption spectroscopy at the Ti K-edge in order to clarify correlated contributions of each constituent atom on the electronic states. Intensities of the pre-edge e g peak and shoulder structure just below the main edge increase with an increase in the amplitude of the applied electric field, whereas that of the main peak decreases in an opposite manner. Based on the multiple scattering theory, the increase and decrease of the e g and main peaks are simulated for different Ti off-center displacements. Our results indicate that these s…

010302 applied physicsCondensed Matter - Materials ScienceX-ray absorption spectroscopyMaterials sciencePolymers and PlasticsAbsorption spectroscopyMetals and AlloysMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologyElectronic structure021001 nanoscience & nanotechnology01 natural sciencesFerroelectricityMolecular physicsElectronic Optical and Magnetic MaterialsIonMicrosecondElectric field0103 physical sciencesAtomCeramics and Composites0210 nano-technologyActa Materialia
researchProduct

X-ray diffraction and Raman spectroscopy studies in Na1/2Bi1/2TiO3-SrTiO3-PbTiO3 solid solutions

2016

The long and short range orders in 0.4Na1/2Bi1/2TiO3-(0.6-x)SrTiO3-xPbTiO3 solid solutions were studied by x-ray diffraction and Raman spectroscopy. X-ray diffraction patterns for these composition...

010302 applied physicsDiffractionMaterials scienceAnalytical chemistry02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic Materialssymbols.namesakeNuclear magnetic resonance0103 physical sciencesX-ray crystallographysymbols0210 nano-technologyRaman spectroscopySolid solutionFerroelectrics
researchProduct

High quality epitaxial Mn 2 Au (001) thin films grown by molecular beam epitaxy

2020

The recently discovered phenomenon of Neel spin–orbit torque in antiferromagnetic Mn2Au [Bodnar et al., Nat. Commun. 9, 348 (2018); Meinert et al., Phys. Rev. Appl. 9, 064040 (2018); Bodnar et al., Phys. Rev. B 99, 140409(R) (2019)] has generated huge interest in this material for spintronics applications. In this paper, we report the preparation and characterization of high quality Mn2Au thin films by molecular beam epitaxy and compare them with magnetron sputtered samples. The films were characterized for their structural and morphological properties using reflective high-energy electron diffraction, x-ray diffraction, x-ray reflectometry, atomic force microscopy, and temperature dependen…

010302 applied physicsDiffractionMaterials scienceCondensed matter physicsSpintronicsScatteringGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnologyEpitaxyRutherford backscattering spectrometry01 natural sciencesCondensed Matter::Materials ScienceElectron diffraction0103 physical sciencesThin film0210 nano-technologyMolecular beam epitaxyJournal of Applied Physics
researchProduct

Intrinsic nanostructures on the (001) surface of strontium titanate at low temperatures

2020

Atomically smooth (001) surfaces of SrTiO3 cut from the high-quality single crystals at two different miscut angles 0.9 and 7.0 deg between the real flat surfaces and crystallographic planes (001) were analyzed by means of the reflection high energy electron diffraction (RHEED) method from the room down to liquid helium temperatures. The diffraction patterns typical of the RHEED geometry close to ideal for a small miscut angle and those exhibiting distinct features of the specific periodicity associated with regular steps, which form due to the larger miscut angle, are presented. The surface symmetry and energetics were shown to impose differences in lattice parameters in parallel to a surf…

010302 applied physicsDiffractionMaterials scienceNanostructureReflection high-energy electron diffractionPhysics and Astronomy (miscellaneous)Condensed matter physicsGeneral Physics and Astronomy01 natural sciencesCondensed Matter::Materials Sciencesymbols.namesakechemistry.chemical_compoundchemistryElectron diffractionLattice (order)0103 physical sciencessymbolsStrontium titanate010306 general physicsRaman spectroscopySingle crystalLow Temperature Physics
researchProduct

Radial composition of single InGaN nanowires: a combined study by EDX, Raman spectroscopy, and X-ray diffraction

2013

010302 applied physicsDiffractionMaterials scienceNanostructureScatteringNanowireAnalytical chemistry02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsEpitaxy01 natural sciencessymbols.namesakeCrystallography0103 physical sciencesX-ray crystallographysymbolsGeneral Materials Science0210 nano-technologyRaman spectroscopyMolecular beam epitaxyphysica status solidi (RRL) - Rapid Research Letters
researchProduct

Superparamagnetic recoverable flowerlike Fe3O4@Bi2O3 core–shell with g-C3N4 sheet nanocomposite: synthesis, characterization, mechanism and kinetic s…

2019

In the present research study, a simple method was developed for the synthesis of three-dimensional flowerlike Fe3O4@Bi2O3 core–shell with g-C3N4 sheet nanocomposites. The X-ray diffraction, Fourier transform infrared spectroscopy, scanning electronic microscopy, transmission electron microscope, vibrating sample magnetometer, dynamic laser scattering analyzer and UV–Vis diffuse reflection spectroscopy were employed for the characterization of structure, purity and morphology of the resultant samples. The degradation of indigo carmine as a model of organic dye pollutant is applied for photo-catalytic activity. The parameters which are affecting the efficiency of various parameters, such as;…

010302 applied physicsDiffractionNanocompositeMaterials scienceKineticsAnalytical chemistryElectronCondensed Matter Physics01 natural sciencesAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialsflowerlike Fe3O4@Bi2O3 core-shell g-C3N4 superparamagnetic photocatalysischemistry.chemical_compoundIndigo carminechemistryTransmission electron microscopySettore CHIM/03 - Chimica Generale E Inorganica0103 physical sciencesSettore CHIM/07 - Fondamenti Chimici Delle TecnologieElectrical and Electronic EngineeringFourier transform infrared spectroscopySuperparamagnetism
researchProduct