Search results for " STEM CELLS"

showing 10 items of 881 documents

Dental pulp stem cells for bone tissue engineering: a review of the current literature and a look to the future.

2018

The aim of this narrative review is to investigate the implication of mesenchymal stem cells harvested from human dental pulp in in vivo bone tissue regeneration. We focused on studies related to roles of human dental pulp stem cells in in vivo bone regeneration. A total of 1021 studies were identified; after the assessment of eligibility, only 39 studies were included in the review. The evaluated information of the studies regards the experimental strategies (e.g., the isolation method, the scaffold, the in vivo animal models). The overall main evidences highlighted from the analysis are that dental pulp stem cells and human-exfoliated deciduous teeth stem cells supported by a suitable sc…

0301 basic medicineEmbryologyBiomedical EngineeringDentistryregenerative medicinehuman dental pulpBone tissueRegenerative medicinebone03 medical and health sciences0302 clinical medicinestomatognathic systemTissue engineeringDental pulp stem cellsMedicineBone regenerationbusiness.industryRegeneration (biology)Mesenchymal stem cell030206 dentistrystem cellstomatognathic diseases030104 developmental biologymedicine.anatomical_structuretissue engineeringStem cellbusinessRegenerative medicine
researchProduct

Retinal homeobox promotes cell growth, proliferation and survival of mushroom body neuroblasts in the Drosophila brain.

2016

Abstract The Drosophila mushroom bodies, centers of olfactory learning and memory in the fly ‘forebrain’, develop from a set of neural stem cells (neuroblasts) that generate a large number of Kenyon cells (KCs) during sustained cell divisions from embryonic to late pupal stage. We show that retinal homeobox ( rx ), encoding for an evolutionarily conserved transcription factor, is required for proper development of the mushroom bodies. Throughout development rx is expressed in mushroom body neuroblasts (MBNBs), their ganglion mother cells (MB-GMCs) and young KCs. In the absence of rx function, MBNBs form correctly but exhibit a reduction in cell size and mitotic activity, whereas overexpress…

0301 basic medicineEmbryologyanimal structuresNerve Tissue ProteinsBiologyRetina03 medical and health sciencesNeuroblastNeural Stem CellsAnimalsDrosophila ProteinsMitosisMushroom BodiesCell ProliferationGanglion CystsHomeodomain ProteinsNeuronsCell growthfungiCell CycleBrainNuclear ProteinsAnatomyEmbryonic stem cellNeural stem cellCell biologyRepressor Proteins030104 developmental biologyDrosophila melanogasterLarvaMushroom bodiesForebrainHomeoboxDevelopmental BiologyTranscription FactorsMechanisms of development
researchProduct

ATR expands embryonic stem cell fate potential in response to replication stress

2020

Fondazione Italiana per la Ricerca sul Cancro FIRC 18112 Sina Atashpaz.Fondazione Umberto Veronesi Sina Atashpaz Associazione Italiana per la Ricerca sul Cancro AIRC 5xmille METAMECH program Vincenzo Costanzo Giovanni Armenise-Harvard Foundation Vincenzo Costanzo European Research Council Consolidator grant 614541 Vincenzo Costanzo Associazione Italiana per la Ricerca sul Cancro Fellowship 23961 Negar ArghavanifarDanish Cancer Society KBVU-2014 Andres Joaquin Lopez-Contreras Danish Council for Independent Research Sapere Aude, DFF Starting Grant 2014 Andres Joaquin Lopez-Contreras European Research Council ERC-2015-STG-679068 Andres Joaquin Lopez-Contreras Danish National Research Foundatio…

0301 basic medicineEndogenyAtaxia Telangiectasia Mutated ProteinsMice0302 clinical medicineTandem Mass SpectrometryTranscription (biology)GENE ATRcell biologyCloning MolecularBiology (General)Cells Cultured0303 health sciencesGeneral NeuroscienceQRTotipotentCell DifferentiationEmbryoGeneral MedicineCell biologyMedicinebiological phenomena cell phenomena and immunityResearch ArticleQH301-705.5replication stressDNA damageScienceSettore MED/08 - Anatomia PatologicaBiologyGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesAnimalsRNA MessengerGeneEmbryonic Stem CellsmouseCell Proliferation030304 developmental biologyMessenger RNAGeneral Immunology and MicrobiologyChimeraSequence Analysis RNAEmbryogenesisTELOMERE ELONGATIONEPIGENETIC RESTRICTIONembryonic stem cellEmbryonic stem cellATR030104 developmental biologyGene Expression RegulationDNA-DAMAGECheckpoint Kinase 1GENOMIC STABILITY030217 neurology & neurosurgeryChromatography LiquidDNA DamageeLife
researchProduct

Melatonin Treatment Alters Biological and Immunomodulatory Properties of Human Dental Pulp Mesenchymal Stem Cells via Augmented Transforming Growth F…

2020

Melatonin is an endogenous neurohormone with well-reported anti-inflammatory and antioxidant properties, but the direct biological and immunomodulatory effects of melatonin on human dental pulp stem cells (hDPSCs) has not been fully elucidated. The aim of this study was to evaluate the influence of melatonin on the cytocompatibility, proliferation, cell migration, odontogenic differentiation, mineralized nodule formation, and immunomodulatory properties of hDPSCs.To address the melatonin biological effects on hDPSCs, the cytocompatibility, proliferation, cell migration, odontogenic differentiation, mineralized nodule formation, and immunomodulatory properties of hDPSCs after melatonin treat…

0301 basic medicineEndogenyPharmacologyMelatonin03 medical and health sciences0302 clinical medicineOsteogenesisTransforming Growth Factor betaDental pulp stem cellsmedicineHumansViability assayTransforming growth factor-beta secretionGeneral DentistryCells CulturedDental PulpCell ProliferationMelatoninbiologyChemistryStem CellsMesenchymal stem cellCell migrationCell DifferentiationMesenchymal Stem Cells030206 dentistryTransforming growth factor beta030104 developmental biologybiology.proteinhormones hormone substitutes and hormone antagonistsmedicine.drugJournal of endodontics
researchProduct

Nano-engineered skin mesenchymal stem cells: potential vehicles for tumour-targeted quantum-dot delivery

2017

Nanotechnology-based drug design offers new possibilities for the use of nanoparticles in imaging and targeted therapy of tumours. Due to their tumour-homing ability, nano-engineered mesenchymal stem cells (MSCs) could be utilized as vectors to deliver diagnostic and therapeutic nanoparticles into a tumour. In the present study, uptake and functional effects of carboxyl-coated quantum dots QD655 were studied in human skin MSCs. The effect of QD on MSCs was examined using a cell viability assay, Ki67 expression analysis, and tri-lineage differentiation assay. The optimal conditions for QD uptake in MSCs were determined using flow cytometry. The QD uptake route in MSCs was examined via fluore…

0301 basic medicineEndosomeGeneral Physics and Astronomyquantum dots02 engineering and technologylcsh:Chemical technologyEndocytosislcsh:TechnologyFull Research PaperFlow cytometry03 medical and health sciencesmedicineNanotechnologyendocytosislcsh:TP1-1185General Materials ScienceCD90stem cell differentiationViability assayMicropinocytosisElectrical and Electronic Engineeringlcsh:Sciencemesenchymal stem cellsmedicine.diagnostic_testlcsh:TChemistryMesenchymal stem cell021001 nanoscience & nanotechnologylcsh:QC1-999Cell biologyNanoscience030104 developmental biologyTargeted drug deliverylcsh:Q0210 nano-technologylcsh:PhysicsBeilstein Journal of Nanotechnology
researchProduct

Stem cell therapy. Old challenges and new solutions

2020

Stem cell therapy (SCT), born as therapeutic revolution to replace pharmacological treatments, remains a hope and not yet an effective solution. Accordingly, stem cells cannot be conceivable as a "canonical" drug, because of their unique biological properties. A new reorientation in this field is emerging, based on a better understanding of stem cell biology and use of cutting-edge technologies and innovative disciplines. This will permit to solve the gaps, failures, and long-term needs, such as the retention, survival and integration of stem cells, by employing pharmacology, genetic manipulation, biological or material incorporation. Consequently, the clinical applicability of SCT for chro…

0301 basic medicineEngineeringmedicine.medical_treatmentbio-nanotechnologyregenerative medicineexosomesBio nanotechnologyRegenerative medicinestem cell therapystem cell transplantationEffective solution03 medical and health sciences0302 clinical medicinestem cellsBiological propertyGeneticsmedicine3D system3D systemshumansMolecular Biologybusiness.industry3D systems; bio-nanotechnology; bioprinting; exosomes; regenerative medicine; stem cell therapy; humans; regenerative medicine; stem cell transplantation; stem cellsGeneral MedicineStem-cell therapyExosome030104 developmental biology030220 oncology & carcinogenesisStem cellbusinessStem cell biologyNeurosciencebioprinting
researchProduct

Stable and Efficient Genetic Modification of Cells in the Adult Mouse V-SVZ for the Analysis of Neural Stem Cell Autonomous and Non-autonomous Effects

2016

Relatively quiescent somatic stem cells support life-long cell renewal in most adult tissues. Neural stem cells in the adult mammalian brain are restricted to two specific neurogenic niches: the subgranular zone of the dentate gyrus in the hippocampus and the ventricular-subventricular zone (V-SVZ; also called subependymal zone or SEZ) in the walls of the lateral ventricles. The development of in vivo gene transfer strategies for adult stem cell populations (i.e. those of the mammalian brain) resulting in long-term expression of desired transgenes in the stem cells and their derived progeny is a crucial tool in current biomedical and biotechnological research. Here, a direct in vivo method …

0301 basic medicineEpendymal CellNeurogenesisGeneral Chemical EngineeringGenetic VectorsStem cellsBiologyTransfectionGeneral Biochemistry Genetics and Molecular BiologySubgranular zoneMice03 medical and health sciencesSubependymal zoneNeural Stem CellsEpendymal cellEpendymaLateral VentriclesDevelopmental biologyNichemedicineSubependymal zoneAnimalsNeurogeneticsGeneral Immunology and MicrobiologyLateral ventricleGeneral NeuroscienceLentivirusNeurogenesisGene Transfer TechniquesBrainNeural stem cellCell biology030104 developmental biologymedicine.anatomical_structureVentricular-subventricular zonenervous systemNeural stem cellIssue 108NeurogenèticaStem cellCèl·lules mareDevelopmental biology; Ependymal cell; Issue 108; Lateral ventricle; Lentivirus; Neural stem cell; Neurogenesis; Niche; Subependymal zone; Ventricular-subventricular zone; Animals; Brain; Ependyma; Lateral Ventricles; Lentivirus; Mice; Neural Stem Cells; Transfection; Gene Transfer Techniques; Genetic VectorsDevelopmental biologyNeuroscienceAdult stem cellJournal of Visualized Experiments
researchProduct

Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM

2019

Single-cell transcriptomic assays have enabled the de novo reconstruction of lineage differentiation trajectories, along with the characterization of cellular heterogeneity and state transitions. Several methods have been developed for reconstructing developmental trajectories from single-cell transcriptomic data, but efforts on analyzing single-cell epigenomic data and on trajectory visualization remain limited. Here we present STREAM, an interactive pipeline capable of disentangling and visualizing complex branching trajectories from both single-cell transcriptomic and epigenomic data. We have tested STREAM on several synthetic and real datasets generated with different single-cell techno…

0301 basic medicineEpigenomicsMultifactor Dimensionality ReductionComputer scienceGeneral Physics and Astronomy02 engineering and technologyOmics dataMyoblastsMiceSingle-cell analysisGATA1 Transcription FactorMyeloid CellsLymphocyteslcsh:ScienceData processingMultidisciplinaryQGene Expression Regulation DevelopmentalRNA sequencingCell DifferentiationGenomics021001 nanoscience & nanotechnologyData processingDNA-Binding ProteinsInterferon Regulatory FactorsSingle-Cell Analysis0210 nano-technologyAlgorithmsOmics technologiesSignal TransductionLineage differentiationScienceComputational biologyGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciencesErythroid CellsAnimalsCell LineageGeneral Chemistrydevelopmental trajectories visualizationHematopoietic Stem CellsPipeline (software)Visualization030104 developmental biologyTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESCellular heterogeneitySingle cell analysilcsh:QGene expressionTranscriptomeTranscription FactorsNature Communications
researchProduct

Wharton's Jelly Mesenchymal Stromal Cells as a Feeder Layer for the Ex Vivo Expansion of Hematopoietic Stem and Progenitor Cells: a Review

2016

In recent years, umbilical cord blood (UCB) has been widely used as an alternative source to bone marrow (BM) for transplantation of hematopoietic stem and progenitor cells (HSPCs) in a variety of hematological and non-hematological disorders. Nevertheless, the insufficient number of UCB-HSPCs for graft represents a major challenge. HSPCs ex vivo expansion prior to transplantation is a valid strategy to overcome this limit. Several attempts to optimize the expansion conditions have been reported, including the use of mesenchymal stromal cells (MSCs) as feeder layer. Wharton's Jelly (WJ), the main component of umbilical cord (UC) matrix, is especially rich in MSCs, which are considered ideal…

0301 basic medicineFeeder CellSettore BIO/17 - IstologiaCancer ResearchStromal cellBone marrow transplantationCell Culture TechniquesEx vivo expansionFeeder layerBiology03 medical and health sciencesFeeder LayerWharton's jellymedicineHumansWharton JellyProgenitor cellCoculture TechniqueWharton’s jelly mesenchymal stromal cellCell ProliferationUmbilical cord blood transplantationMesenchymal Stromal CellMesenchymal stem cellHematopoietic Stem Cell TransplantationFeeder CellsMesenchymal Stem CellsCell DifferentiationHematopoietic Stem CellCell BiologyHematopoietic Stem CellsCoculture TechniquesCell biologyTransplantation030104 developmental biologymedicine.anatomical_structureImmunologyHematopoietic and progenitor stem cellBone marrowStem cellCell Culture TechniqueHuman
researchProduct

ESC-Derived BDNF-Overexpressing Neural Progenitors Differentially Promote Recovery in Huntington's Disease Models by Enhanced Striatal Differentiation

2016

Summary Huntington's disease (HD) is characterized by fatal motoric failures induced by loss of striatal medium spiny neurons. Neuronal cell death has been linked to impaired expression and axonal transport of the neurotrophin BDNF (brain-derived neurotrophic factor). By transplanting embryonic stem cell-derived neural progenitors overexpressing BDNF, we combined cell replacement and BDNF supply as a potential HD therapy approach. Transplantation of purified neural progenitors was analyzed in a quinolinic acid (QA) chemical and two genetic HD mouse models (R6/2 and N171-82Q) on the basis of distinct behavioral parameters, including CatWalk gait analysis. Explicit rescue of motor function by…

0301 basic medicineGene ExpressionBiochemistrychemistry.chemical_compoundMice0302 clinical medicineNeural Stem CellsNeurotrophic factorsGenes Reporterlcsh:QH301-705.5Neuronslcsh:R5-920NeurogenesisCell DifferentiationAnatomyembryonic stem cellsHuntington Diseaselcsh:Medicine (General)NeurogliaLocomotionNeurotrophinHuntington’s diseaseCell SurvivalBiologyMedium spiny neuronArticle03 medical and health sciencesHuntington's diseaseGeneticsmedicinestriatal differentiationAnimalsBrain-derived neurotrophic factorBrain-Derived Neurotrophic FactorCell Biologymedicine.diseaseCorpus StriatumTransplantationDisease Models Animal030104 developmental biologylcsh:Biology (General)chemistrynervous systembiology.proteinNeuroscience030217 neurology & neurosurgeryBiomarkersDevelopmental BiologyQuinolinic acidStem Cell TransplantationStem Cell Reports
researchProduct