Search results for " STEM"

showing 10 items of 2170 documents

Nanoparticle delivery to metastatic breast cancer cells by nanoengineered mesenchymal stem cells

2017

We created a 3D cell co-culture model by combining nanoengineered mesenchymal stem cells (MSCs) with the metastatic breast cancer cell line MDA-MD-231 and primary breast cancer cell line MCF7 to explore the transfer of quantum dots (QDs) to cancer cells. First, the optimal conditions for high-content QD loading in MSCs were established. Then, QD uptake in breast cancer cells was assessed after 24 h in a 3D co-culture with nanoengineered MSCs. We found that incubation of MSCs with QDs in a serum-free medium provided the best accumulation results. It was found that 24 h post-labelling QDs were eliminated from MSCs. Our results demonstrate that breast cancer cells efficiently uptake QDs that a…

0301 basic medicineCellGeneral Physics and Astronomyquantum dotsspheroidslcsh:Chemical technologylcsh:TechnologyFull Research Paper03 medical and health sciences3D cell culturemedicineNanotechnologycancerlcsh:TP1-1185General Materials ScienceElectrical and Electronic Engineeringlcsh:Scienceskin and connective tissue diseases3D cell culturemesenchymal stem cellslcsh:TChemistryMesenchymal stem cellCancermedicine.diseaseMetastatic breast cancerlcsh:QC1-999Nanoscience030104 developmental biologymedicine.anatomical_structureTargeted drug deliveryCell cultureCancer cellCancer researchlcsh:Qlcsh:PhysicsBeilstein Journal of Nanotechnology
researchProduct

2020

Abstract Background Stem cells` (SC) functional heterogeneity and its poorly understood aetiology impedes clinical development of cell-based therapies in regenerative medicine and oncology. Recent studies suggest a strong correlation between the SC migration potential and their therapeutic efficacy in humans. Designating SC migration as a denominator of functional SC heterogeneity, we sought to identify highly migrating subpopulations within different SC classes and evaluate their therapeutic properties in comparison to the parental non-selected cells. Methods We selected highly migrating subpopulations from mesenchymal and neural SC (sMSC and sNSC), characterized their features including b…

0301 basic medicineCellMesenchymal stem cellMotilityGeneral MedicineBiologyRegenerative medicineGeneral Biochemistry Genetics and Molecular BiologyNeural stem cell3. Good healthTransplantation03 medical and health sciences030104 developmental biology0302 clinical medicinemedicine.anatomical_structurePodoplanin030220 oncology & carcinogenesisCancer researchmedicineStem cellEBioMedicine
researchProduct

Epigenetic Regulation of Cardiac Differentiation of Embryonic Stem Cells and Tissues.

2016

International audience; Specific gene transcription is a key biological process that underlies cell fate decision during embryonic development. The biological process is mediated by transcription factors which bind genomic regulatory regions including enhancers and promoters of cardiac constitutive genes. DNA is wrapped around histones that are subjected to chemical modifications. Modifications of histones further lead to repressed, activated or poised gene transcription, thus bringing another level of fine tuning regulation of gene transcription. Embryonic Stem cells (ES cells) recapitulate within embryoid bodies (i.e., cell aggregates) or in 2D culture the early steps of cardiac developme…

0301 basic medicineCellular differentiationGeneral Chemical Engineering[SDV]Life Sciences [q-bio]Human Embryonic Stem Cellscardiac developmentcardiac differentiationEmbryoid bodychromatin immunoprecipitationBiologyGeneral Biochemistry Genetics and Molecular BiologyEpigenesis GeneticHistones03 medical and health sciencesMiceIssue 112AnimalsHumansEpigeneticsEnhancerTranscription factorGeneticsGeneral Immunology and MicrobiologyGeneral NeurosciencePromoterCell DifferentiationHeartgene transcription regulationEmbryonic stem cellES cellsCell biology[SDV] Life Sciences [q-bio]030104 developmental biologyEpigeneticsChromatin immunoprecipitationDevelopmental Biology
researchProduct

Bifunctional Hydrogels Containing the Laminin Motif IKVAV Promote Neurogenesis

2017

Summary Engineering of biomaterials with specific biological properties has gained momentum as a means to control stem cell behavior. Here, we address the effect of bifunctionalized hydrogels comprising polylysine (PL) and a 19-mer peptide containing the laminin motif IKVAV (IKVAV) on embryonic and adult neuronal progenitor cells under different stiffness regimes. Neuronal differentiation of embryonic and adult neural progenitors was accelerated by adjusting the gel stiffness to 2 kPa and 20 kPa, respectively. While gels containing IKVAV or PL alone failed to support long-term cell adhesion, in bifunctional gels, IKVAV synergized with PL to promote differentiation and formation of focal adh…

0301 basic medicineCellular differentiationHYDROGELSCELL DIFFERENTIATION02 engineering and technologyBiochemistry//purl.org/becyt/ford/1 [https]MiceNeural Stem CellsIKVAVlcsh:QH301-705.5Cells Culturedlcsh:R5-920β(1)-integrinNeurogenesisHydrogelsMouse Embryonic Stem Cells021001 nanoscience & nanotechnologyNeural stem cellCell biologyStem celllcsh:Medicine (General)0210 nano-technologyCIENCIAS NATURALES Y EXACTASbiomaterialsPOLYLYSINENeurogenesisBiologyNEUROGENESISCiencias BiológicasFocal adhesion03 medical and health sciencesBiología Celular MicrobiologíalamininReportGeneticsΒ1-INTEGRINAnimalsProgenitor cell//purl.org/becyt/ford/1.6 [https]BIOMATERIALSCell adhesionFocal AdhesionsbioengineeringTissue Engineeringβ1-integrinCell BiologypolylysineNEURAL STEM CELLSMolecular biologyEmbryonic stem cellElasticityPeptide FragmentsBIOENGINEERINGLAMININMice Inbred C57BLcell differentiation030104 developmental biologylcsh:Biology (General)Developmental BiologyStem Cell Reports
researchProduct

Nano-delivery system targeting to cancer stem cell cluster of differentiation biomarkers

2017

Cancer stem cells (CSCs) are one of the most important origins of cancer progression and metastasis. CSCs have unique self-renewal properties and diverse cell membrane receptors that induced the resistance to the conventional chemotherapeutic agents. Therefore, the therapeutic removal of CSCs could result in the cancer cure with lack of recurrence and metastasis. In this regard, targeting CSCs in accordance to their specific biomarkers is a talented attitude in cancer therapy. Various CSCs surface biomarkers have been described, which some of them exhibited similarities on different cancer cell types, while the others are cancer specific and have just been reported on one or a few types of …

0301 basic medicineCellular differentiationPharmaceutical ScienceAntineoplastic AgentsBiologyMetastasis03 medical and health sciencesDrug Delivery Systems0302 clinical medicineTherapeutic indexCancer stem cellBiomarkers TumormedicineAnimalsHumansCluster of differentiationCancerCell Differentiationmedicine.disease030104 developmental biology030220 oncology & carcinogenesisCancer cellImmunologyDrug deliveryNeoplastic Stem CellsCancer researchNanoparticlesJournal of Controlled Release
researchProduct

Differentiation and characterization of rat adipose tissue mesenchymal stem cells into endothelial-like cells

2018

In this study, mesenchymal stem cells were isolated from rat adipose tissue (AD-MSCs) to characterize and differentiate them into endothelial-like cells. AD-MSCs were isolated by mechanical and enzymatic treatments, and their identity was verified by colony-forming units (CFU) test and by differentiation into cells of mesodermal lineages. The endothelial differentiation was induced by plating another aliquot of cells in EGM-2 medium, enriched with specific endothelial growth factors. Five subcultures were performed. The expression of stemness genes (OCT4, SOX2 and NANOG) was investigated. The presence of CD90 and the absence of the CD45 were evaluated by flow cytometry. The endothelial-like…

0301 basic medicineCellular differentiationSettore VET/09 - Clinica Chirurgica VeterinariaSettore BIO/13 - Biologia Applicataimmunophenotypical analysiCell DifferentiationNanog Homeobox ProteinGeneral MedicineCadherinsFlow CytometryUp-RegulationPlatelet Endothelial Cell Adhesion Molecule-1Endothelial stem cellDrug CombinationsAdipose Tissueembryonic structuresVeterinary (all)ProteoglycansCollagenStem cellHomeobox protein NANOGadipose-derived mesenchymal stem cellDown-RegulationCD146 AntigenBiology03 medical and health sciencesMatrigel assaySOX2Antigens CDAdipose-derived mesenchymal stem cellsAnimalsEndothelial cells differentiationRats WistarImmunophenotypical analysisMatrigelGeneral VeterinaryGene Expression ProfilingSOXB1 Transcription FactorsMesenchymal stem cellEndothelial CellsMesenchymal Stem Cells3T3-L1Molecular biologyAdipose-derived mesenchymal stem cells; Endothelial cells differentiation; Gene expression; Immunophenotypical analysis; Matrigel assay; Rat; Veterinary (all)Culture MediaRats030104 developmental biologyadipose-derived mesenchymal stem cells; endothelial cells differentiation; gene expression; immunophenotypical analysis; matrigel assay; ratLeukocyte Common AntigensThy-1 AntigensRatLamininGene expressionOctamer Transcription Factor-3
researchProduct

2021

Cytomegalovirus (CMV) infection is a major cause of morbidity and mortality following hematopoietic stem cell transplantation (HSCT). Measuring CMV-specific cellular immunity may improve the risk stratification and management of patients. IFN-γ ELISpot assays, based on the stimulation of peripheral blood mononuclear cells with CMV pp65 and IE-1 proteins or peptides, have been validated in clinical settings. However, it remains unclear to which extend the T-cell response to synthetic peptides reflect that mediated by full-length proteins processed by antigen-presenting cells. We compared the stimulating ability of pp65 and IE-1 proteins and corresponding overlapping peptides in 16 HSCT recip…

0301 basic medicineCellular immunityAntigen processingbusiness.industryELISPOTmedicine.medical_treatmentClinical BiochemistryCongenital cytomegalovirus infectionvirus diseasesImmunosuppressionHematopoietic stem cell transplantationmedicine.diseasePeripheral blood mononuclear cell03 medical and health sciences030104 developmental biology0302 clinical medicine030220 oncology & carcinogenesisImmunologyMedicinebusinessCD8Diagnostics
researchProduct

Cell-Autonomous and Non-cell-autonomous Function of Hox Genes Specify Segmental Neuroblast Identity in the Gnathal Region of the Embryonic CNS in Dro…

2016

During central nervous system (CNS) development neural stem cells (Neuroblasts, NBs) have to acquire an identity appropriate to their location. In thoracic and abdominal segments of Drosophila, the expression pattern of Bithorax-Complex Hox genes is known to specify the segmental identity of NBs prior to their delamination from the neuroectoderm. Compared to the thoracic, ground state segmental units in the head region are derived to different degrees, and the precise mechanism of segmental specification of NBs in this region is still unclear. We identified and characterized a set of serially homologous NB-lineages in the gnathal segments and used one of them (NB6-4 lineage) as a model to i…

0301 basic medicineCentral Nervous SystemCancer ResearchEmbryologyGene ExpressionNervous SystemNeural Stem CellsAnimal CellsMedicine and Health SciencesDrosophila ProteinsHox geneGenetics (clinical)Regulation of gene expressionGeneticsNeuronsMembrane GlycoproteinsDrosophila MelanogasterGene Expression Regulation DevelopmentalAnimal ModelsProtein-Tyrosine KinasesNeural stem cellCell biologyInsectsPhenotypesembryonic structuresDrosophilaDrosophila melanogasterAnatomyCellular Structures and OrganellesCellular TypesResearch Articleanimal structuresArthropodalcsh:QH426-470ImmunoglobulinsBiologyAntennapediaResearch and Analysis Methods03 medical and health sciencesModel OrganismsNeuroblastNuclear BodiesCyclin EGeneticsAnimalsGene RegulationCell LineageMolecular BiologyEcology Evolution Behavior and SystematicsLoss functionCell NucleusHomeodomain ProteinsNeuroectodermEmbryosOrganismsBiology and Life SciencesCell Biologybiology.organism_classificationInvertebrateslcsh:Genetics030104 developmental biologyCellular NeuroscienceDevelopmental BiologyNeurosciencePLoS Genetics
researchProduct

Progressive derivation of serially homologous neuroblast lineages in the gnathal CNS of Drosophila

2018

Along the anterior-posterior axis the central nervous system is subdivided into segmental units (neuromeres) the composition of which is adapted to their region-specific functional requirements. In Drosophila melanogaster each neuromere is formed by a specific set of identified neural stem cells (neuroblasts, NBs). In the thoracic and anterior abdominal region of the embryonic ventral nerve cord segmental sets of NBs resemble the ground state (2nd thoracic segment, which does not require input of homeotic genes), and serial (segmental) homologs generate similar types of lineages. The three gnathal head segments form a transitional zone between the brain and the ventral nerve cord. It has be…

0301 basic medicineCentral Nervous SystemEmbryologylcsh:MedicineSerial homologyGene ExpressionNervous SystemAnimal CellsMedicine and Health SciencesBrainbow Labelinglcsh:ScienceNeuronsBrain MappingMultidisciplinarybiologyAnatomyNeuromereNeural stem cellChemistryPhysical SciencesDrosophilaDrosophila melanogasterAnatomyCellular TypesHomeotic geneResearch ArticleLineage (genetic)Imaging TechniquesNeuroimagingResearch and Analysis MethodsComposite Images03 medical and health sciencesNeuroblastInterneuronsGeneticsAnimalsCell LineageMolecular Biology TechniquesMolecular BiologyGround Statelcsh:REmbryosBiology and Life SciencesCell BiologyQuantum Chemistrybiology.organism_classification030104 developmental biologyVentral nerve cordCellular Neurosciencelcsh:QCloningNeuroscienceDevelopmental BiologyPLoS ONE
researchProduct

Gene expression profiles uncover individual identities of gnathal neuroblasts and serial homologies in the embryonic CNS of Drosophila.

2015

The numbers and types of progeny cells generated by neural stem cells in the developing CNS are adapted to its region-specific functional requirements. In Drosophila, segmental units of the CNS develop from well-defined patterns of neuroblasts. Here we constructed comprehensive neuroblast maps for the three gnathal head segments. Based on the spatiotemporal pattern of neuroblast formation and the expression profiles of 46 marker genes (41 transcription factors), each neuroblast can be uniquely identified. Compared with the thoracic ground state, neuroblast numbers are progressively reduced in labial, maxillary and mandibular segments due to smaller sizes of neuroectodermal anlagen and, part…

0301 basic medicineCentral Nervous SystemGenetic Markersanimal structuresSerial homologyCell CountGenes InsectBiology03 medical and health sciences0302 clinical medicineNeuroblastNeural Stem CellsNeuroblastsAbdomenAnimalsCell LineageHox geneMolecular Biologyreproductive and urinary physiologyfungiAnatomyThoraxGene expression profileNeuromereStem Cells and RegenerationEmbryonic stem cellNeural stem cellCell biology103Segmental patterning030104 developmental biologyDrosophila melanogasternervous systemVentral nerve cordDrosophila brainembryonic structuresDeformedTranscriptomeGanglion mother cell030217 neurology & neurosurgeryDevelopmental BiologyDevelopment (Cambridge, England)
researchProduct