6533b839fe1ef96bd12a654a
RESEARCH PRODUCT
Nanoparticle delivery to metastatic breast cancer cells by nanoengineered mesenchymal stem cells
Kārlis PleikoIneta PopenaLiga SauliteUna RiekstinaRicardas RotomskisDominyka Dapkutesubject
0301 basic medicineCellGeneral Physics and Astronomyquantum dotsspheroidslcsh:Chemical technologylcsh:TechnologyFull Research Paper03 medical and health sciences3D cell culturemedicineNanotechnologycancerlcsh:TP1-1185General Materials ScienceElectrical and Electronic Engineeringlcsh:Scienceskin and connective tissue diseases3D cell culturemesenchymal stem cellslcsh:TChemistryMesenchymal stem cellCancermedicine.diseaseMetastatic breast cancerlcsh:QC1-999Nanoscience030104 developmental biologymedicine.anatomical_structureTargeted drug deliveryCell cultureCancer cellCancer researchlcsh:Qlcsh:Physicsdescription
We created a 3D cell co-culture model by combining nanoengineered mesenchymal stem cells (MSCs) with the metastatic breast cancer cell line MDA-MD-231 and primary breast cancer cell line MCF7 to explore the transfer of quantum dots (QDs) to cancer cells. First, the optimal conditions for high-content QD loading in MSCs were established. Then, QD uptake in breast cancer cells was assessed after 24 h in a 3D co-culture with nanoengineered MSCs. We found that incubation of MSCs with QDs in a serum-free medium provided the best accumulation results. It was found that 24 h post-labelling QDs were eliminated from MSCs. Our results demonstrate that breast cancer cells efficiently uptake QDs that are released from nanoengineered MSCs in a 3D co-culture. Moreover, the uptake is considerably enhanced in metastatic MDA-MB-231 cells compared with MCF7 primary breast cancer cells. Our findings suggest that nanoengineered MSCs could serve as a vehicle for targeted drug delivery to metastatic cancer.
year | journal | country | edition | language |
---|---|---|---|---|
2017-06-19 | Beilstein Journal of Nanotechnology |