Search results for " STIR"
showing 10 items of 246 documents
Thermal Characterization of Friction Stir Welded Butt Joints
2005
Microstructural Changes Determining Joint Strength in Friction Stir Welding of Aluminium Alloys
2005
In the paper the results of a wide experimental activity on friction stir welding (FSW) of aluminum alloys are reported. In particular the butt joints of two different materials, namely AA1050-O and AA6082-T6 were considered. Grains dimensions and precipitates density were investigated both in the parent materials and after the welding processes. Furthermore post-welding heat treatments effects on the joint strength were studied.
On the field variables influence on bonding phenomena during FSW processes: experimental and numerical study
2013
Solid state bonding recurs in several manufacturing processes, as Friction Stir Welding (FSW), Linear Friction Welding (LFW), extrusion of hollow profiles and Accumulative Roll Bonding (ARB). The former processes are nowadays of particular industrial interest because of the specific advantages with respect to the classic welding technologies. In FSW the solid state bonding is obtained between an undeformed “cold” material, already placed in the advancing side of the joint, and the “hot” material flow incoming from the retreating side. Proper conditions of pressure, temperature, strain and strain rate are needed in order to get the final effective bonding. In the paper experimental tests on …
Process Mechanics in Friction Stir Welding of Magnesium Alloys: Experimental and Numerical Analysis
2012
On the friction stir welding of titanium alloys: Experimental measurements and FEM model fine tuning
2012
Friction Stir Welding (FSW) is a solid state welding process patented in 1991 by TWI; initially adopted to weld aluminum alloys, is now being successfully used also for magnesium alloys, copper and steels. Recently, research is focusing on titanium alloys thanks to the high interest that such materials are getting from the industry as welding of titanium alloys by traditional fusion welding techniques presents several difficulties due to high material reactivity resulting in bonding with oxygen, hydrogen, and nitrogen with consequent embrittlement of the joint. In this way FSW represents a cost effective and high quality solution. The study of the temperatures reached at the varying of the …
Advanced FEM modeling of friction stir welding of Ti6Al4V: Microstructural evolutions
2013
Friction Stir Welding (FSW) is a solid state welding process patented in 1991 by TWI; initially adopted to weld aluminum alloys, is now being successfully used also for high resistant materials. Welding of titanium alloys by traditional fusion welding techniques presents several difficulties due to high material reactivity resulting in bonding with oxygen, hydrogen, and nitrogen with consequent embrittlement of the joint. In this way FSW represents a cost effective and high quality solution. The final mechanical properties of the joints are strictly connected to the microstructural evolutions, in terms of phase change, occurring during the process. In the paper a 3D FEM model of the FSW wel…
Effect of process parameters on the joint integrity in Friction Stir Welding of Ti-6Al-4V lap joints
2013
DETERMINAZIONE DELLE TENSIONI RESIDUE IN PROFILATI IN LEGA DI ALLUMINIO SALDATI DI TESTA MEDIANTE FRICTION STIR WELDING
2014
Material flow analysis in dissimilar friction stir welding of AA2024 and Ti6Al4V butt joints
2016
The complex material flow occurring during the weld of dissimilar AA2024 to Ti6Al4V butt and lap joints was highlighted through a dedicated numerical model able to take into account the effects of the different materials as well as the phase transformation of the used titanium alloy.