Search results for " Scattering"
showing 10 items of 6840 documents
Hybrid Biopolymer and Lipid Nanoparticles with Improved Transfection Efficacy for mRNA
2020
Cells 9(9), 2034 (1-19) (2020). doi:10.3390/cells9092034
Physicochemical and Preclinical Evaluation of Spermine-Derived Surfactant Liposomes for in Vitro and in Vivo siRNA-Delivery to Liver Macrophages
2016
Herein we report on a liposomal system for siRNA delivery consisting of cholesterol (Chol), distearoylphosphatidylcholine (DSPC), and surfactant TF (1-hydroxy-50-amino-3,4,7,10,13,16,19,22-octaoxa-37,41,45-triaza-pentacontane), a novel spermine derivative (HO-EG8-C12-spermine) which has shown improved siRNA delivery to cells in vitro and in vivo. Predominantly single-walled liposomes with reproducible sizes and moderately broad size distributions were generated with an automated extrusion device. The liposomes remained stable when prepared in the presence of siRNA at N/P ratios of 17-34. However, when mixed with human serum in equal volumes, larger aggregates in the size range of several hu…
Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1
2018
The wide anthropogenic use of selenium compounds represents the major source of selenium pollution world- wide, causing environmental issues and health concerns. Microbe-based strategies for metal removal/recovery have received increasing interest thanks to the association of the microbial ability to detoxify toxic metal/ metalloid polluted environments with the production of nanomaterials. This study investigates the tolerance and the bioconversion of selenite (SeO32−) by the aerobically grown Actinomycete Rhodococcus aetherivorans BCP1 in association with its ability to produce selenium nanoparticles and nanorods (SeNPs and SeNRs). The BCP1 strain showed high tolerance towards SeO32− with…
Skin-derived mesenchymal stem cells as quantum dot vehicles to tumors
2017
Dominyka Dapkute,1,2 Simona Steponkiene,1 Danute Bulotiene,1 Liga Saulite,3 Una Riekstina,3 Ricardas Rotomskis1,4 1Biomedical Physics Laboratory, National Cancer Institute, Vilnius, Lithuania; 2Institute of Biosciences, Vilnius University, Vilnius, Lithuania; 3Faculty of Medicine, University of Latvia, Riga, Latvia; 4Biophotonics Group of Laser Research Center, Faculty of Physics, Vilnius University, Vilnius, Lithuania Purpose: Cell-mediated delivery of nanoparticles is emerging as a new method of cancer diagnostics and treatment. Due to their inherent regenerative properties, adult mesenchymal stem cells (MSCs) are naturally attracted to wounds and sites of inflammation, as well as tumors.…
Structure and Stability of Hsp60 and Groel in Solution
2016
Molecular chaperones are a class of proteins able to prevent non-specific aggregation of mitochondrial proteins and to promote their proper folding. Among them, human Hsp60 is currently considered as a ubiquitous molecule with multiple roles both in maintaining health conditions and as a trigger of several diseases. Of particular interest is its role in neurodegenerative disorders since it is able to inhibit the formation of amyloid fibrils.Hsp60 structure was considered, until recent years, analogue to the one of its bacterial homolog GroEL, one of the most investigated chaperones, whose crystallographic structure is a homo-tetradecamer, made up of two seven member rings. On the contrary, …
Generalized Thru-Reflect-Line Calibration Technique for the Measurement of Multimodal Radiating Waveguides
2017
The objective of this letter is to extend the use of the generalized thru-reflect-line measurement technique to the case of a radiating multimodal rectangular waveguide aperture. Although this radiating aperture has been carefully studied from a theoretical point of view, the relevant experimental characterization has been limited to the case where the feeding waveguide is monomodal. In addition to theory, we also present experimental results that agree quite well with full-wave simulations, thereby fully validating the measurement technique.
Stability of Alkyl Chain-Mediated Lipid Anchoring in Liposomal Membranes
2020
Lipid exchange among biological membranes, lipoprotein particles, micelles, and liposomes is an important yet underrated phenomenon with repercussions throughout the life sciences. The premature loss of lipid molecules from liposomal formulations severely impacts therapeutic applications of the latter and thus limits the type of lipids and lipid conjugates available for fine-tuning liposomal properties. While cholesterol derivatives, with their irregular lipophilic surface shape, are known to readily undergo lipid exchange and interconvert, e.g., with serum, the situation is unclear for lipids with regular, linear-shaped alkyl chains. This study compares the propensity of fluorescence-label…
Photocage-initiated time-resolved solution X-ray scattering investigation of protein dimerization
2018
Photocaging in combination with X-ray solution scattering allows for the time-resolved study of protein dynamics in solution. This method is versatile and allows for accurate triggering of protein function.
Amyloid β-peptide insertion in liposomes containing GM1-cholesterol domains.
2015
Neuronal membrane damage is related to the early impairments appearing in Alzheimer's disease due to the interaction of the amyloid β-peptide (Aβ) with the phospholipid bilayer. In particular, the ganglioside GM1, present with cholesterol in lipid rafts, seems to be able to initiate Aβ aggregation on membrane. We studied the thermodynamic and structural effects of the presence of GM1 on the interaction between Aβ and liposomes, a good membrane model system. Isothermal Titration Calorimetry highlighted the importance of the presence of GM1 in recruiting monomeric Aβ toward the lipid bilayer. Light and Small Angle X-ray Scattering revealed a different pattern for GM1 containing liposomes, bot…
The effects of pressure on the energy landscape of proteins
2018
AbstractProtein dynamics is characterized by fluctuations among different conformational substates, i.e. the different minima of their energy landscape. At temperatures above ~200 K, these fluctuations lead to a steep increase in the thermal dependence of all dynamical properties, phenomenon known as Protein Dynamical Transition. In spite of the intense studies, little is known about the effects of pressure on these processes, investigated mostly near room temperature. We studied by neutron scattering the dynamics of myoglobin in a wide temperature and pressure range. Our results show that high pressure reduces protein motions, but does not affect the onset temperature for the Protein Dynam…