Search results for " Segmentation"

showing 10 items of 462 documents

Retinal vasculature segmentation and measurement framework for color fundus and SLO images

2020

Abstract The change in vascular geometry is an indicator of various health issues linked with vision and cardiovascular risk factors. Early detection and diagnosis of these changes can help patients to select an appropriate treatment option when the disease is in its primary phase. Automatic segmentation and quantification of these vessels would decrease the cost and eliminate inconsistency related to manual grading. However, automatic detection of the vessels is challenging in the presence of retinal pathologies and non-uniform illumination, two common occurrences in clinical settings. This paper presents a novel framework to address the issue of retinal blood vessel detection and width me…

business.industryComputer scienceBiomedical EngineeringRetinalVascular geometryFundus (eye)Scanning laser ophthalmoscopychemistry.chemical_compoundchemistryIterative thresholdingAutomatic segmentationGraph (abstract data type)SegmentationComputer visionArtificial intelligencebusinessBiocybernetics and Biomedical Engineering
researchProduct

Automatic multi-seed detection for MR breast image segmentation

2017

In this paper an automatic multi-seed detection method for magnetic resonance (MR) breast image segmentation is presented. The proposed method consists of three steps: (1) pre-processing step to locate three regions of interest (axillary and sternal regions); (2) processing step to detect maximum concavity points for each region of interest; (3) breast image segmentation step. Traditional manual segmentation methods require radiological expertise and they usually are very tiring and time-consuming. The approach is fast because the multi-seed detection is based on geometric properties of the ROI. When the maximum concavity points of the breast regions have been detected, region growing and m…

business.industryComputer scienceComputer Science (all)Pattern recognitionImage segmentationGold standard (test)Breast MR030218 nuclear medicine & medical imagingTheoretical Computer Science03 medical and health sciencesSeed detection0302 clinical medicineRegion of interestRegion growing030220 oncology & carcinogenesisManual segmentationSegmentationSensitivity (control systems)Artificial intelligenceAutomatic segmentationMr imagesbusinessMaximum concavity point
researchProduct

Multiscale Attention-Based Prototypical Network For Few-Shot Semantic Segmentation

2021

International audience; Deep learning-based image understanding techniques require a large number of labeled images for training. Few-shot semantic segmentation, on the contrary, aims at generalizing the segmentation ability of the model to new categories given only a few labeled samples. To tackle this problem, we propose a novel prototypical network (MAPnet) with multiscale feature attention. To fully exploit the representative features of target classes, we firstly extract rich contextual information of labeled support images via a multiscale feature enhancement module. The learned prototypes from support features provide further semantic guidance on the query image. Then we adaptively i…

business.industryComputer scienceDeep learningFeature extractionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Pattern recognition02 engineering and technologyImage segmentation010501 environmental sciencesSemantics01 natural sciencesImage (mathematics)[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Minimum bounding boxFeature (computer vision)0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingSegmentationArtificial intelligencebusiness0105 earth and related environmental sciences
researchProduct

Features extraction on complex images

2005

The accessibility of inexpensive and powerful computers has allowed true digital holography to be used for industrial inspection using microscopy. This technique allows the capture of a complex image (i.e., one containing magnitude and phase), and the reconstruction of the phase and magnitude information. Digital holograms give a new dimension to texture analysis, since the topology information can be used as an additional way to extract features. This new technique can be used to extend previous work on the image segmentation of patterned wafers for defect detection. The paper presents a comparison between the features obtained using Gabor filtering on complex images under illumination and…

business.industryComputer scienceFeature extractionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONHolographyFilter (signal processing)Image segmentationIterative reconstructionlaw.inventionImage texturelawDigital holographic microscopyComputer visionArtificial intelligencebusinessDigital holographyFeature detection (computer vision)
researchProduct

Automatic Detection of Infantile Hemangioma using Convolutional Neural Network Approach

2020

Infantile hemangioma is the most common tumor of childhood. This study proposes an automatic detection as a preliminary step for a further accurate monitoring tool to evaluate the clinical status of hemangioma. For the detection of hemangioma pixels, a convolutional neural network (CNN) was trained on patches of two classes (hemangioma and nonhemangioma) from the train dataset, and then it was used to classify all the pixels of the region of interest from the test dataset. In order to evaluate the results of segmentation obtained with CNN, the region of interest of the test dataset was also segmented using two classical methods of segmentation: fuzzy c-means clustering (FCM) and segmentatio…

business.industryComputer sciencePattern recognitionImage segmentationmedicine.diseaseConvolutional neural networkOtsu's methodHemangiomasymbols.namesakeRegion of interestHistogramsymbolsmedicineSegmentationArtificial intelligencebusinessCluster analysis2020 International Conference on e-Health and Bioengineering (EHB)
researchProduct

Hybrid 3D-ResNet Deep Learning Model for Automatic Segmentation of Thoracic Organs at Risk in CT Images

2020

In image radiation therapy, accurate segmentation of organs at risk (OARs) is a very essential task and has clinical applications in cancer treatment. The segmentation of organs close to lung, breast, or esophageal cancer is a routine and time-consuming process. The automatic segmentation of organs at risk would be an essential part of treatment planning for patients suffering radiotherapy. The position and shape variation, morphology inherent and low soft tissue contrast between neighboring organs across each patient’s scans is the challenging task for automatic segmentation of OARs in Computed Tomography (CT) images. The objective of this paper is to use automatic segmentation of the orga…

business.industryComputer sciencemedicine.medical_treatmentDeep learningVolumetric segmentationPattern recognition02 engineering and technologyResidual neural network030218 nuclear medicine & medical imagingRadiation therapy03 medical and health sciences0302 clinical medicine0202 electrical engineering electronic engineering information engineeringmedicineAutomatic segmentation020201 artificial intelligence & image processingSegmentationPyramid (image processing)Artificial intelligencebusinessRadiation treatment planning2020 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM)
researchProduct

2020

Abstract. Despite the availability of both commercial and open-source software, an ideal tool for digital rock physics analysis for accurate automatic image analysis at ambient computational performance is difficult to pinpoint. More often, image segmentation is driven manually, where the performance remains limited to two phases. Discrepancies due to artefacts cause inaccuracies in image analysis. To overcome these problems, we have developed CobWeb 1.0, which is automated and explicitly tailored for accurate greyscale (multiphase) image segmentation using unsupervised and supervised machine learning techniques. In this study, we demonstrate image segmentation using unsupervised machine le…

business.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONImage processingEdge enhancementImage segmentationNon-local meansMachine learningcomputer.software_genreGrayscaleSoftwareUnsupervised learningSegmentationArtificial intelligencebusinesscomputerGeoscientific Model Development
researchProduct

Statistical methods for texture analysis applied to agronomical images

2008

For activities of agronomical research institute, the land experimentations are essential and provide relevant information on crops such as disease rate, yield components, weed rate... Generally accurate, they are manually done and present numerous drawbacks, such as penibility, notably for wheat ear counting. In this case, the use of color and/or texture image processing to estimate the number of ears per square metre can be an improvement. Then, different image segmentation techniques based on feature extraction have been tested using textural information with first and higher order statistical methods. The Run Length method gives the best results closed to manual countings with an averag…

business.industryFeature extractionPattern recognitionImage processingImage segmentationTexture (music)Class (biology)Image (mathematics)Image textureCluster validity indexComputer visionArtificial intelligencebusinessMathematicsImage Processing: Machine Vision Applications
researchProduct

Content based segmentation of patterned wafers

2004

We extend our previous work on the image segmentation of electronic structures on patterned wafers to improve the defect detection process on optical inspection tools. Die-to-die wafer in- spection is based on the comparison of the same area on two neigh- boring dies. The dissimilarities between the images are a result of defects in this area of one of the dies. The noise level can vary from one structure to the other, within the same image. Therefore, seg- mentation is required to create a mask and apply an optimal thresh- old in each region. Contrast variation on the texture can affect the response of the parameters used for the segmentation. We show a method to anticipate these variation…

business.industryMachine visionComputer scienceFeature extractionWavelet transformScale-space segmentationImage processingImage segmentationAtomic and Molecular Physics and OpticsComputer Science ApplicationsSegmentationComputer visionArtificial intelligenceElectrical and Electronic EngineeringPhotomaskbusinessJournal of Electronic Imaging
researchProduct

Unsupervised clustering method for pattern recognition in IIF images

2017

Autoimmune diseases are a family of more than 80 chronic, and often disabling, illnesses that develop when underlying defects in the immune system lead the body to attack its own organs, tissues, and cells. Diagnosis of autoimmune pathologies is based on research and identification of antinuclear antibodies (ANA) through indirect immunofluorescence (IIF) method and is performed by analyzing patterns and fluorescence intensity. We propose here a method to automatically classify the centromere pattern based on the grouping of centromeres on the cells through a clustering K-means algorithm. The described method was tested on a public database (MIVIA). The results of the test showed an Accuracy…

business.industryPattern recognitionIIfBiologyIIF imageSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)K-meanIdentification (information)Fluorescence intensityStatistical classificationPattern recognitionPattern recognition (psychology)Autoimmune diseaseAutomatic segmentationArtificial intelligenceUnsupervised clusteringCluster analysisbusinessclustering
researchProduct