Search results for " Segmentation"
showing 10 items of 462 documents
CONSUMER BEHAVIOR IN TOURISM AND THE INFLUENCING FACTORS OF THE DECISION MAKING PROCESS
2013
Being part of the tourism industries requires substantial knowledge. Therefore, it is important to be aware of all the factors that influence a tourist to purchase a particular tourism product. These complex factors are vital into the final purchase decision of an offer with emotional value for customers. This paper presents the typologies of tourists and tourism, and in relation to these aspects, the different types of segmentation, as well as several motivators and determinants that tourism companies and tourists should acknowledge in order to provide the premises for a win-win situation.
Image Segmentation Techniques for Healthcare Systems
2019
The present special issue of the Journal of Healthcare Engineering collects articles written by researchers scattered around the world who belong to the academic and industrial environments. The papers of this special issue have been selected by a rigorous peer-reviewing process with the support of at least two reviewers per paper, along with the opinion written in the final decision by a component of the editorial staff. Different methods on biomedical image segmentation dedicated to healthcare systems have been developed regarding, for example, the fields of machine learning, deformable models, fuzzy models, and so on. Such methods have been applied on different biomedical image modalitie…
What makes segmentation good? A case study in boreal forest habitat mapping
2013
Segmentation goodness evaluation is a set of approaches meant for deciding which segmentation is good. In this study, we tested different supervised segmentation evaluation measures and visual interpretation in the case of boreal forest habitat mapping in Southern Finland. The data used were WorldView-2 satellite imagery, a lidar digital elevation model (DEM), and a canopy height model (CHM) in 2 m resolution. The segmentation methods tested were the fractal net evolution approach (FNEA) and IDRISI watershed segmentation. Overall, 252 different segmentation methods, layers, and parameter combinations were tested. We also used eight different habitat delineations as reference polygons agains…
Efficient contour-based annotation by iterative deep learning for organ segmentation from volumetric medical images
2022
Abstract Purpose Training deep neural networks usually require a large number of human-annotated data. For organ segmentation from volumetric medical images, human annotation is tedious and inefficient. To save human labour and to accelerate the training process, the strategy of annotation by iterative deep learning recently becomes popular in the research community. However, due to the lack of domain knowledge or efficient human-interaction tools, the current AID methods still suffer from long training time and high annotation burden. Methods We develop a contour-based annotation by iterative deep learning (AID) algorithm which uses boundary representation instead of voxel labels to incorp…
A role for backward transitional probabilities in word segmentation?
2008
A number of studies have shown that people exploit transitional probabilities between successive syllables to segment a stream of artificial continuous speech into words. It is often assumed that what is actually exploited are the forward transitional probabilities (given XY, the probability that X will be followed by Y ), even though the backward transitional probabilities (the probability that Y has been preceded by X) were equally informative about word structure in the languages involved in those studies. In two experiments, we showed that participants were able to learn the words from an artificial speech stream when the only available cues were the backward transitional probabilities.…
Automated approach for indirect immunofluorescence images classification based on unsupervised clustering method
2018
Autoimmune diseases (ADs) are a collection of many complex disorders of unknown aetiology resulting in immune responses to self-antigens and are thought to result from interactions between genetic and environmental factors. ADs collectively are amongst the most prevalent diseases in the U.S., affecting at least 7% of the population. The diagnosis of ADs is very complex, the standard screening methods provides seeking and recognizing of Antinuclear Antibodies (ANA) by Indirect ImmunoFluorescence (IIF) based on HEp-2 cells. In this paper an automatic system able to identify and classify the Centromere pattern is presented. The method is based on the grouping of centromeres present on the cell…
Segmentation of Positron Emission Tomography Images Using Multi-atlas Anatomical Magnetic Resonance Imaging (MRI)
2021
Positron emission tomography (PET), is a medical imaging technique, it provides information about the body’s cellular function rather than its anatomy. However, due to the functional nature of PET images, locating the anatomical structures in such an image remains a challenging task, indeed, PET images only provide very little anatomical information. Segmentation of PET images, therefore, requires the intervention of a medical expert. The expert proceeds to a manual segmentation of a volume slice by slice, which turns out to be very tedious and costly in terms of time. In this article, we present, evaluate, and make available a multi-atlas approach for automatically segmenting human brain P…
An automatic method for metabolic evaluation of gamma knife treatments
2015
Lesion volume delineation of Positron Emission Tomography images is challenging because of the low spatial resolution and high noise level. Aim of this work is the development of an operator independent segmentation method of metabolic images. For this purpose, an algorithm for the biological tumor volume delineation based on random walks on graphs has been used. Twenty-four cerebral tumors are segmented to evaluate the functional follow-up after Gamma Knife radiotherapy treatment. Experimental results show that the segmentation algorithm is accurate and has real-time performance. In addition, it can reflect metabolic changes useful to evaluate radiotherapy response in treated patients.
Semi-automatic detection of skin malformations by analysis of spectral images
2013
The multi-spectral imaging technique to reveal skin malformations has been described in this work. Four spectral images taken at polarized monochromatic LED illumination (450nm, 545nm, 660nm and 940 nm) and polarized white LED light imaged by CMOS sensor via cross-oriented polarizing filter were analyzed to calculate chromophore maps. The algorithm based on skin color analysis and user-defined threshold selection allows highlighting of skin areas with predefined chromophore concentration semi-automatically. Preliminary results of clinical tests are presented.
Neuro-radiosurgery treatments: MRI brain tumor seeded image segmentation based on a cellular automata model
2016
Gross Tumor Volume (GTV) segmentation on medical images is an open issue in neuro-radiosurgery. Magnetic Resonance Imaging (MRI) is the most promi-nent modality in radiation therapy for soft-tissue anatomical districts. Gamma Knife stereotactic neuro-radiosurgery is a mini-invasive technique used to deal with inaccessible or insufficiently treated tumors. During the planning phase, the GTV is usually contoured by radiation oncologists using a manual segmentation procedure on MR images. This methodology is certainly time-consuming and op-erator-dependent. Delineation result repeatability, in terms of both intra- and inter-operator reliability, is only obtained by using computer-assisted appr…