Search results for " Shear"

showing 10 items of 201 documents

Shear design of high strength concrete beams in MRFs

2019

This paper presents the criteria for the shear design of high strength concrete (HSC) beams in moment resisting frames (MRFs). The formulation of an analytical model is provided for the case of beams with longitudinal reinforcement in the presence of transverse stirrups. The model is of additive type, in the meaning that the shear resistance of the beam is evaluated as the sum of several contributions. In particular, the contribution of concrete, longitudinal rebars, and transversal reinforcement are taken into account. Furthermore, for assessing the concrete contribution, a classical approach is followed, according to which two effects arise in the shear mechanism: the arc and the beam eff…

High strength concreteMaterials scienceGeography Planning and DevelopmentFlexural resistance; High strength concrete; Moment resisting frames; Shear resistance; Shear-moment domain; Building and Construction0211 other engineering and technologies020101 civil engineering02 engineering and technologyResidual0201 civil engineeringlcsh:HT165.5-169.9Flexural resistanceReinforcementShear-moment domainHigh strength concrete021110 strategic defence & security studiesbusiness.industryShear resistanceStructural engineeringMoment resisting framesBuilding and Constructionlcsh:City planningUrban StudiesTransverse planeSettore ICAR/09 - Tecnica Delle CostruzioniCompressive strengthShear resistanceShear (geology)lcsh:TA1-2040Moment resisting framelcsh:Engineering (General). Civil engineering (General)businessBeam (structure)
researchProduct

The solubilisation behaviour of some dichloroalkanes in aqueous solutions of PEO-PPO-PEO triblock copolymers: a dynamic light scattering, fluorescenc…

2006

The aggregation behaviour of PEO-PPO-PEO triblock copolymers in water and in water + chlorinated additive mixtures was studied by means of fluorescence spectroscopy, dynamic light scattering (DLS), and small-angle neutron scattering (SANS). The copolymers were chosen such as to investigate the effects of molecular architecture (L35 and 10R5) and molecular weight by keeping constant the hydrophilic/hydrophobic balance (F88 and F108). 1,2-Dichloroethane was used as a prototype of water basins contaminants. The hydrodynamic radius of the block copolymer aggregates (R(h,M)) and the intensity ratio of pyrene of the first and the third vibrational band (I(1)/I(3)) were determined as a function of…

Hydrodynamic radiusAnalytical chemistryGeneral Physics and AstronomyMICELLIZATIONNeutron scatteringPHASE-BEHAVIORFluorescence spectroscopyPolyethylene GlycolsDynamic light scattering:OSCILLATORY SHEAR MEASUREMENTSBLOCK-COPOLYMERAlkanesCopolymerOrganic chemistryMOLAR VOLUMESSURFACTANTSPhysical and Theoretical ChemistrySolubilityTEMPERATUREAqueous solutionChemistryWaterSmall-angle neutron scatteringSolutionsMICELLAR STRUCTURENeutron DiffractionRefractometrySpectrometry FluorescenceSolubilityWATER-OIL SYSTEMSPropylene GlycolsTHERMODYNAMIC PROPERTIESChlorinePhysical chemistry chemical physics : PCCP
researchProduct

Analysis of local shear effects in brick masonry infilled RC frames

2013

Masonry infills panels placed among framed structures meshes have a relevant influence in presence seismic actions in terms of strength stiffness and global displacement capacity. In the case of RC structures, the modifications of internal forces due to infill-frame interaction may be not compatible with surrounding frame members strength especially considering additional shear forces arising at the ends of beams and columns in contact with the panel under lateral actions. Such effects may be in many cases the cause of unexpected brittle collapse mechanisms which compromise the safety of the entire structure. In this paper by means of a double (micromodeling and macromodeling) procedure reg…

Infilled RC framesMasonry veneerRc framesMicromodelLocal shear effectBrick masonry; Equivalent strut; Infilled RC frames; Local shear effects; Micromodel;Settore ICAR/09 - Tecnica Delle CostruzioniMicromodelShear (geology)Computational Theory and MathematicBrick masonryBrick masonryEquivalent strutGeotechnical engineeringGeologyInfilled RC frameCivil and Structural EngineeringLocal shear effects
researchProduct

Un élément fini mixte tridimensionnel pour le calcul des contraintes d'interface

1999

ABSTRACT In this paper we present an interfacial finite element designed for analysing planar interfaces in a three-dimensional approach. The element is derived from Hellinger-Reissner's mixed variational principle and takes into account the continuity of the displacement and of the transverse stress components through the interface. Stress analysis of a sandwich plate is made to assess the validity and the effectiveness of the element models, with comparisons to closed-form and numerical solutions.

Interface (Java)Mechanical EngineeringComputational MechanicsGeometryFinite element methodStress (mechanics)Computational MathematicsPlanarMechanics of MaterialsVariational principleModeling and SimulationTransverse shearElement (category theory)Displacement (fluid)MathematicsRevue Européenne des Éléments Finis
researchProduct

Apparent interfacial shear strength of short-flax-fiber/starch acetate composites

2016

Abstract The paper deals with an indirect industry-friendly method for identification of the interfacial shear strength (IFSS) in a fully bio-based composite. The IFSS of flax fiber/starch acetate is evaluated by a modified Bowyer and Bader method based on an analysis of the stress–strain curve of a short-fiber-reinforced composite in tension. A shear lag model is developed for the tensile stress–strain response of short-fiber-reinforced composites allowing for an elastic-perfectly plastic stress transfer. Composites with different fiber volume fractions and a variable content of plasticizer have been analyzed. The apparent IFSS of flax/starch acetate is within the range of 5.5–20.5 MPa, de…

Interfacial shear strengthMaterials sciencePolymers and PlasticsApparent interfacial shear strengthGeneral Chemical EngineeringComposite numberSheet molding compoundsGreen composites02 engineering and technology010402 general chemistry01 natural sciencesBiomaterialsFlax fiberPlasticizersFlaxYarnUltimate tensile strengthChemical Engineering (all)Composite materialThermoplastic starchchemistry.chemical_classificationFiber volume fractionsFlax fiberElastic perfectly plasticStress–strain curvePlasticizerPolymer021001 nanoscience & nanotechnologyFiber reinforced plasticsReinforcement0104 chemical sciencesFibersStress-strain curvesReinforced plasticsInterfacial shearchemistryShort-fiber-reinforced compositesAdhesiveGreen composite0210 nano-technologyLinenInternational Journal of Adhesion and Adhesives
researchProduct

Modeling Atmospheric Turbulence via Rapid Distortion Theory: Spectral Tensor of Velocity and Buoyancy

2017

Abstract A spectral tensor model is presented for turbulent fluctuations of wind velocity components and temperature, assuming uniform vertical gradients in mean temperature and mean wind speed. The model is built upon rapid distortion theory (RDT) following studies by Mann and by Hanazaki and Hunt, using the eddy lifetime parameterization of Mann to make the model stationary. The buoyant spectral tensor model is driven via five parameters: the viscous dissipation rate ε, length scale of energy-containing eddies L, a turbulence anisotropy parameter , gradient Richardson number (Ri) representing the local atmospheric stability, and the rate of destruction of temperature variance . Model outp…

Length scaleAtmospheric Science010504 meteorology & atmospheric sciencesK-epsilon turbulence modelFLOWVelocityTensorsWind01 natural sciencesWind speedAtmospheric temperature010305 fluids & plasmasPhysics::Fluid DynamicsEnergy-containing eddiesConvergence of numerical methodsMonin-Obukhov similarity theorySCALEPhysicsTurbulenceAtmospheric turbulenceMechanicsBuoyancySURFACE-LAYER TURBULENCEClassical mechanicsFluxesStratified turbulenceSIMILARITYSIMULATIONBoundary layersStabilityBuoyancyMETEOROLOGYengineering.materialPROFILEAtmospheric thermodynamics0103 physical sciencesAtmospheric instabilityWind shearsSTABLY STRATIFIED TURBULENCETensorRapid distortion theory0105 earth and related environmental sciencesWind shearBoundary layer flowRichardson numberAtmospheric observationsViscous dissipation rateHorizontal array turbulence study field programsTurbulenceBoundary layerengineeringJournal of the Atmospheric Sciences
researchProduct

Influence of column shear failure on pushover based assessment of masonry infilled reinforced concrete framed structures: A case study

2017

Structural frames, constructed either of steel or reinforced concrete (RC), are often infilled with masonry panels. However, during the analysis of the structural frames, it has become common practice to disregard the existence of infills because of the complexity in modeling. This omission should not be allowed because the two contributions (of infills and of frames) complement each other in providing a so different structural system. The use of different modeling assumptions significantly affects the capacity as well as the inelastic demand and safety assessment. In specific, the adoption of equivalent diagonal pin-jointed struts leaves open the problem of the evaluation of the additional…

Local shear action; Masonry infill wall panels; Pushover analysis; RC frames; Civil and Structural Engineering; Geotechnical Engineering and Engineering Geology; Soil ScienceEngineeringDiagonalStructural system0211 other engineering and technologiesRC frameSoil Science020101 civil engineering02 engineering and technology0201 civil engineeringGeotechnical engineeringLocal shear actionRC framesMasonry infill wall panelsCivil and Structural Engineering021110 strategic defence & security studiesbusiness.industryMasonry infill wall panelRc framesStructural engineeringMasonryReinforced concreteGeotechnical Engineering and Engineering GeologyShear (geology)Pushover analysiAxial forcebusinessPushover analysis
researchProduct

Haemodynamic predictors of a penetrating atherosclerotic ulcer rupture using fluid-structure interaction analysis

2013

We present preliminary data on the flow-induced haemodynamic and structural loads exerted on a penetrating atherosclerotic aortic ulcer (PAU). Specifically, one-way fluid-structure interaction analysis was performed on the aortic model reconstructed from a 66-year-old male patient with a PAU that evolved into an intramural haematoma and rupture of the thoracic aorta. The results show that elevated blood pressure (117 mmHg) and low flow velocity at the aortic wall (0.15 m/s(2)) occurred in the region of the PAU. We also found a low value of time-averaged wall shear stress (1.24 N/m(2)) and a high value of the temporal oscillation in the wall shear stress (oscillatory shear index = 0.13) in t…

Malemedicine.medical_treatmentHemodynamicsAorta ThoracicMedicineThoracic aortaHematomamedicine.diagnostic_testEndovascular ProceduresModels CardiovascularSettore ING-IND/34 - Bioingegneria IndustrialeAnatomyTreatment OutcomeAtherosclerosiCardiologyWall shear streCardiology and Cardiovascular MedicineBrief CommunicationsBlood Flow VelocityHumanPulmonary and Respiratory Medicinemedicine.medical_specialtyAortographyAortic RuptureAortic DiseasesAortographyBlood Vessel Prosthesis ImplantationSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchinePenetrating atherosclerotic ulcerPenetrating atherosclerotic ulcerInternal medicinemedicine.arteryFluid-structure interactionShear stressHumansArterial PressureComputer SimulationHemodynamicAortic ruptureUlcerAgedEndovascular Procedurebusiness.industryHemodynamicsStentmedicine.diseaseAtherosclerosisAortic DiseaseBlood pressureRegional Blood FlowSurgeryStress MechanicalbusinessTomography X-Ray Computed
researchProduct

Experimental Tests on Typical Masonry of Messina Area (Italy) Retrofitted with CAM: Full Scale Panels

2014

The present paper focuses on an in-situ testing campaign recently developed in the Messina area, Italy, aiming at the assessment of the in-plane shear behaviour of traditional masonry retrofitted with the innovative CAM system (a system of 3D pre-tensioned stainless steel ties). The typical masonry of Messina area, is characterised by low mechanical properties, both for its texture and for the bad quality of mortar, as well as lack of transverse connections. The high seismic risk characterizing the zone, amplifies the need for in-plane strengthening and transverse connections improving. The CAM system, Masonry Active Ties or Manufact Active Confining, allows to realise a 3D pre-tensioned ty…

Masonry In-Plane Shear CAM PanelsSettore ICAR/09 - Tecnica Delle Costruzioni
researchProduct

Secondary Circulation of Tropical Cyclones in Vertical Wind Shear: Lagrangian Diagnostic and Pathways of Environmental Interaction

2015

Abstract This study introduces a Lagrangian diagnostic of the secondary circulation of tropical cyclones (TCs), here defined by those trajectories that contribute to latent heat release in the region of high inertial stability of the TC core. This definition accounts for prominent asymmetries and transient flow features. Trajectories are mapped from the three-dimensional physical space to the (two dimensional) entropy–temperature space. The mass flux vector in this space subsumes the thermodynamic characteristics of the secondary circulation. The Lagrangian diagnostic is then employed to further analyze the impact of vertical wind shear on TCs in previously published idealized numerical exp…

Mass fluxAtmospheric ScienceInertial frame of referenceMeteorologyWind shearLatent heatSecondary circulationMechanicsTropical cycloneSpace (mathematics)Stability (probability)GeologyJournal of the Atmospheric Sciences
researchProduct