Search results for " Signal Transduction"

showing 10 items of 113 documents

Arabidopsis plants deficient in plastidial glyceraldehyde-3-phosphate dehydrogenase show alterations in abscisic acid (ABA) signal transduction: inte…

2010

Abscisic acid (ABA) controls plant development and regulates plant responses to environmental stresses. A role for ABA in sugar regulation of plant development has also been well documented although the molecular mechanisms connecting the hormone with sugar signal transduction pathways are not well understood. In this work it is shown that Arabidopsis thaliana mutants deficient in plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase (gapcp1gapcp2) are ABA insensitive in growth, stomatal closure, and germination assays. The ABA levels of gapcp1gapcp2 were normal, suggesting that the ABA signal transduction pathway is impaired in the mutants. ABA modified gapcp1gapcp2 gene expressio…

0106 biological sciencesPhysiologyArabidopsisPlant Science01 natural sciencesSerine03 medical and health scienceschemistry.chemical_compoundAmino acid homeostasisPlant Growth RegulatorsGene Expression Regulation PlantArabidopsisArabidopsis thalianaPlastidsAbscisic acidGlyceraldehyde 3-phosphate dehydrogenase030304 developmental biologyglyceraldehyde-3-phosphate dehydrogenase0303 health sciencesbiologyArabidopsis Proteinsorganic chemicalsfungiGlyceraldehyde-3-Phosphate Dehydrogenasesfood and beveragessugar signallingglycolysisbiology.organism_classificationResearch Papers3. Good healthGAPCpchemistryBiochemistryABAABA signal transductionbiology.proteinCarbohydrate MetabolismSignal transductionSugar signal transduction010606 plant biology & botanyAbscisic AcidSignal Transduction
researchProduct

Cytosolic calcium rises and related events in ergosterol-treated Nicotiana cells

2011

International audience; The typical fungal membrane component ergosterol was previously shown to trigger defence responses and protect plants against pathogens. Most of the elicitors mobilize the second messenger calcium, to trigger plant defences. We checked the involvement of calcium in response to ergosterol using Nicotiana plumbaginifolia and Nicotiana tabacum cv Xanthi cells expressing apoaequorin in the cytosol. First, it was verified if ergosterol was efficient in these cells inducing modifications of proton fluxes and increased expression of defence-related genes. Then, it was shown that ergosterol induced a rapid and transient biphasic increase of free [Ca2þ]cyt which intensity dep…

0106 biological sciencesTime FactorsPhysiologyNicotiana tabacumPlant SciencesterolsSecond Messenger Systemstobacco01 natural scienceschemistry.chemical_compoundCytosolpolycyclic compoundsPhosphorylationCalcium signalingreactive oxygen species0303 health sciencesErgosterolelicitorbiologyergosterolHydrogen-Ion ConcentrationPlants Genetically ModifiedRecombinant ProteinsCell biologyBiochemistrySecond messenger systemReactive oxygen species; Calcium signature; Elicitor; Signal transduction; MAPKs; tobaccolipids (amino acids peptides and proteins)Protonssignal transductionCell Survivalnicotiana plumbaginifoliachemistry.chemical_elementnicotiana tabacumoxydantCalciumcalcium signature03 medical and health sciencesAequorinMAPKsBAPTAGenetics[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyCalcium Signaling030304 developmental biologyMitogen-Activated Protein Kinase KinasesCalcium metabolismHydrogen Peroxidebiochemical phenomena metabolism and nutritionbiology.organism_classificationCytosolchemistryCalciumApoproteins010606 plant biology & botany
researchProduct

Retinoic Acid affects Lung Adenocarcinoma growth by inducing differentiation via GATA6 activation and EGFR and Wnt inhibition

2016

AbstractA fundamental task in cancer research aims at the identification of new pharmacological therapies that can affect tumor growth. Differentiation therapy might exploit this function not only for hematological diseases, such as acute promyelocytic leukemia (APML) but also for epithelial tumors, including lung cancer. Here we show that Retinoic Acid (RA) arrests in vitro and in vivo the growth of Tyrosine Kinase Inhibitors (TKI) resistant Non Small Cell Lung Cancer (NSCLC). In particular, we found that RA induces G0/G1 cell cycle arrest in TKI resistant NSCLC cells and activates terminal differentiation programs by modulating the expression of GATA6, a key transcription factor involved …

0301 basic medicineAcute promyelocytic leukemiaScienceEGFRRetinoic acidMice NudeTretinoinBiologyArticle03 medical and health scienceschemistry.chemical_compoundDifferentiation therapySettore BIO/13 - Biologia ApplicataCarcinoma Non-Small-Cell LungCell Line TumorGATA6 Transcription FactormedicineRetinoic acidAnimalsHumansLung cancerProtein Kinase InhibitorsWnt Signaling PathwayTranscription factorCell ProliferationMultidisciplinaryQRWnt signaling pathwayCell Differentiationmedicine.diseaseG1 Phase Cell Cycle CheckpointsXenograft Model Antitumor Assaysrespiratory tract diseasesErbB Receptorslung cancerAnimals; Carcinoma Non-Small-Cell Lung; Cell Differentiation; Cell Line Tumor; Cell Proliferation; Drug Resistance Neoplasm; ErbB Receptors; G1 Phase Cell Cycle Checkpoints; GATA6 Transcription Factor; Humans; Mice Nude; Protein Kinase Inhibitors; Signal Transduction; Tretinoin; Wnt Signaling Pathway; Xenograft Model Antitumor Assays030104 developmental biologychemistryDrug Resistance NeoplasmImmunologyCancer researchMedicineAdenocarcinomaEngineering sciences. TechnologyTyrosine kinaseSignal Transduction
researchProduct

The emerging role of Notch pathway in ageing: Focus on the related mechanisms in age-related diseases

2016

Notch signaling is an evolutionarily conserved pathway, which is fundamental for the development of all tissues, organs and systems of human body. Recently, a considerable and still growing number of studies have highlighted the contribution of Notch signaling in various pathological processes of the adult life, such as age-related diseases. In particular, the Notch pathway has emerged as major player in the maintenance of tissue specific homeostasis, through the control of proliferation, migration, phenotypes and functions of tissue cells, as well as in the cross-talk between inflammatory cells and the innate immune system, and in onset of inflammatory age-related diseases. However, until …

0301 basic medicineAgingNotchNotch pathwayNotch signaling pathwayInflammationa signaling complex networkBiologyBiochemistryBiomarkers and targets for personalized treatmentBiomarkers and targets for personalized treatments03 medical and health sciencesAge relatedAge-related diseaseReceptorsmedicineA signaling complex network; Age-related diseases; Ageing; Biomarkers and targets for personalized treatments; Involved mechanisms; Notch pathway; Aging; Animals; Homeostasis; Humans; Inflammation; Inflammation Mediators; Receptors Notch; Signal TransductionAnimalsHomeostasisHumansMolecular BiologyInflammationInnate immune systemReceptors NotchSettore BIO/11Involved mechanismsAge-related diseases; Ageing; Biomarkers and targets for personalized treatments; Involved mechanisms; Notch pathway; a signaling complex networkPhenotypeInvolved mechanismAgeing030104 developmental biologyNeurologyAgeingImmunologymedicine.symptomSignal transductionInflammation MediatorsNeuroscienceHomeostasisAge-related diseasesBiotechnologySignal Transduction
researchProduct

Distinctive Histogenesis and Immunological Microenvironment Based on Transcriptional Profiles of Follicular Dendritic Cell Sarcomas

2017

Abstract Follicular dendritic cell (FDC) sarcomas are rare mesenchymal tumors with variable clinical, morphologic, and phenotypic characteristics. Transcriptome analysis was performed on multiple FDC sarcomas and compared with other mesenchymal tumors, microdissected Castleman FDCs, and normal fibroblasts. Using unsupervised analysis, FDC sarcomas clustered with microdissected FDCs, distinct from other mesenchymal tumors and fibroblasts. The specific endowment of FDC-related gene expression programs in FDC sarcomas emerged by applying a gene signature of differentially expressed genes (n = 1,289) between microdissected FDCs and fibroblasts. Supervised analysis comparing FDC sarcomas with mi…

0301 basic medicineAlgorithms; B7-H1 Antigen; Castleman Disease; Chromatin; Cluster Analysis; Dendritic Cell Sarcoma Follicular; Gene Expression Profiling; Gene Expression Regulation Neoplastic; Humans; Programmed Cell Death 1 Ligand 2 Protein; Programmed Cell Death 1 Receptor; Signal Transduction; T-Lymphocytes Helper-Inducer; T-Lymphocytes Regulatory; Up-Regulation; Gene Regulatory Networks; Molecular Biology; Oncology; Cancer ResearchCancer ResearchProgrammed Cell Death 1 ReceptorDendritic Cell Sarcoma FollicularBiologyT-Lymphocytes RegulatoryB7-H1 AntigenTranscriptome03 medical and health sciencesmedicineCluster AnalysisHumansGene Regulatory NetworksMolecular BiologyRegulation of gene expressionCluster AnalysiGene Regulatory NetworkFollicular dendritic cellsCastleman DiseaseGene Expression ProfilingMesenchymal stem cellT-Lymphocytes Helper-InducerProgrammed Cell Death 1 Ligand 2 Proteinmedicine.diseaseChromatinUp-RegulationAlgorithmGene Expression Regulation NeoplasticGene expression profiling030104 developmental biologyOncologyCancer researchImmunohistochemistrySarcomaAlgorithmsHumanSignal TransductionExtracellular matrix organizationMolecular Cancer Research
researchProduct

Mutant p53 induces Golgi tubulo-vesiculation driving a prometastatic secretome

2020

TP53 missense mutations leading to the expression of mutant p53 oncoproteins are frequent driver events during tumorigenesis. p53 mutants promote tumor growth, metastasis and chemoresistance by affecting fundamental cellular pathways and functions. Here, we demonstrate that p53 mutants modify structure and function of the Golgi apparatus, culminating in the increased release of a pro-malignant secretome by tumor cells and primary fibroblasts from patients with Li-Fraumeni cancer predisposition syndrome. Mechanistically, interacting with the hypoxia responsive factor HIF1α, mutant p53 induces the expression of miR-30d, which in turn causes tubulo-vesiculation of the Golgi apparatus, leading …

0301 basic medicineBiopsyGeneral Physics and AstronomyGolgi ApparatusAnimals Biopsy Breast Neoplasms Cell Line Tumor Cell Transformation Neoplastic Female Fibroblasts Gene Expression Regulation Neoplastic Golgi Apparatus Humans Hypoxia-Inducible Factor 1 alpha Subunit Li-Fraumeni Syndrome Mice MicroRNAs Microtubules Mutation Primary Cell Culture Secretory Vesicles Signal TransductionSkin Tumor Microenvironment Tumor Suppressor Protein p53 Xenograft Model Antitumor Assays02 engineering and technologymedicine.disease_causeCell TransformationMicrotubulesSettore BIO/09 - FisiologiaMetastasisLi-Fraumeni SyndromeMiceTumor MicroenvironmentGolgisecretory machinerySuper-resolution microscopyAnimals; Biopsy; Breast Neoplasms; Cell Line Tumor; Cell Transformation Neoplastic; Female; Fibroblasts; Gene Expression Regulation Neoplastic; Golgi Apparatus; Humans; Hypoxia-Inducible Factor 1 alpha Subunit; Li-Fraumeni Syndrome; Mice; MicroRNAs; Microtubules; Mutation; Primary Cell Culture; Secretory Vesicles; Signal Transduction; Skin; Tumor Microenvironment; Tumor Suppressor Protein p53; Xenograft Model Antitumor Assayslcsh:ScienceSkinMultidisciplinaryTumorChemistrymutant p53QCell migrationMicroRNASecretomics021001 nanoscience & nanotechnologyCell biologyGene Expression Regulation NeoplasticCell Transformation NeoplasticsymbolsFibroblastmiR-30dFemaleHypoxia-Inducible Factor 10210 nano-technologyBreast NeoplasmHumanSignal TransductionCancer microenvironmentStromal cellSecretory VesicleSciencePrimary Cell CultureBreast NeoplasmsMicrotubuleGolgi ApparatuSettore MED/08 - Anatomia Patologicaalpha SubunitGeneral Biochemistry Genetics and Molecular BiologyArticleCell Line03 medical and health sciencessymbols.namesakeCell Line TumormedicineAnimalsHumansSettore MED/05 - Patologia ClinicaSecretionTumor microenvironmentNeoplasticAnimalSecretory VesiclesGeneral ChemistryOncogenesGolgi apparatusHDAC6FibroblastsMicroreviewHypoxia-Inducible Factor 1 alpha SubunitmicroenvironmentXenograft Model Antitumor AssaysMicroRNAs030104 developmental biologyGene Expression RegulationMutationlcsh:QTumor Suppressor Protein p53Carcinogenesis
researchProduct

The phospholipase DDHD1 as a new target in colorectal cancer therapy

2018

Background Our previous study demonstrates that Citrus-limon derived nanovesicles are able to decrease colon cancer cell viability, and that this effect is associated with the downregulation of the intracellular phospholipase DDHD domain-containing protein 1 (DDHD1). While few studies are currently available on the contribution of DDHD1 in neurological disorders, there is no information on its role in cancer. This study investigates the role of DDHD1 in colon cancer. Methods DDHD1 siRNAs and an overexpression vector were transfected into colorectal cancer and normal cells to downregulate or upregulate DDHD1 expression. In vitro and in vivo assays were performed to investigate the functional…

0301 basic medicineCancer ResearchColorectal cancerApoptosisMiceSettore BIO/13 - Biologia ApplicataGene Regulatory NetworksMolecular Targeted TherapyCitrus-limon nanovesicleTransfectionlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogens3. Good healthCitrus-limon nanovesicles; Colorectal cancer; Phospholipase DDHD1; Oncology; Cancer ResearchOncologyPhospholipasesCitrus-limon nanovesicles; Colorectal cancer; Phospholipase DDHD1; Animals; Antineoplastic Agents; Apoptosis; Cell Line Tumor; Cell Proliferation; Colorectal Neoplasms; Computational Biology; Disease Models Animal; Female; Gene Expression Profiling; Gene Ontology; Gene Regulatory Networks; Gene Silencing; Humans; MAP Kinase Signaling System; Mice; Phospholipases; Signal Transduction; Xenograft Model Antitumor Assays; Biomarkers Tumor; Molecular Targeted TherapyFemaleColorectal NeoplasmsSignal TransductionMAP Kinase Signaling SystemAntineoplastic Agentslcsh:RC254-282Citrus-limon nanovesicles03 medical and health sciencesDownregulation and upregulationIn vivoCell Line TumorBiomarkers TumormedicineAnimalsHumansGene silencingGene SilencingPhospholipase DDHD1Cell Proliferationbusiness.industryCell growthGene Expression ProfilingResearchComputational BiologyCancermedicine.diseaseXenograft Model Antitumor AssaysColorectal cancerDisease Models AnimalGene Ontology030104 developmental biologyApoptosisCancer researchbusiness
researchProduct

Nicotinamide Phosphoribosyltransferase Acts as a Metabolic Gate for Mobilization of Myeloid-Derived Suppressor Cells

2019

Abstract Cancer induces alteration of hematopoiesis to fuel disease progression. We report that in tumor-bearing mice the macrophage colony-stimulating factor elevates the myeloid cell levels of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD salvage pathway, which acts as negative regulator of the CXCR4 retention axis of hematopoietic cells in the bone marrow. NAMPT inhibits CXCR4 through a NAD/Sirtuin 1–mediated inactivation of HIF1α-driven CXCR4 gene transcription, leading to mobilization of immature myeloid-derived suppressor cells (MDSC) and enhancing their production of suppressive nitric oxide. Pharmacologic inhibition or myeloid-specific ablation …

0301 basic medicineCancer ResearchMyeloidmedicine.medical_treatmentNudeNicotinamide phosphoribosyltransferaseApoptosisColorectal NeoplasmInbred C57BLMicechemistry.chemical_compound0302 clinical medicineTumor Cells CulturedHematopoiesiNicotinamide PhosphoribosyltransferaseInbred BALB CMice Inbred BALB CCulturedbiologySarcomaTumor CellsHaematopoiesismedicine.anatomical_structureOncology030220 oncology & carcinogenesisSirtuinFemaleSarcoma ExperimentalColorectal NeoplasmsAnimals; Apoptosis; Cell Proliferation; Colorectal Neoplasms; Female; Hematopoiesis; Humans; Mammary Neoplasms Experimental; Mice; Mice Inbred BALB C; Mice Inbred C57BL; Mice Nude; Myeloid-Derived Suppressor Cells; NAD; Nicotinamide Phosphoribosyltransferase; Sarcoma Experimental; Signal Transduction; Tumor Cells Cultured; Xenograft Model Antitumor AssaysHumanSignal TransductionMice NudeExperimental03 medical and health sciencesmedicineMyeloid-Derived Suppressor CellAnimalsHumansCell ProliferationAnimalMyeloid-Derived Suppressor CellsMammary NeoplasmsApoptosiMammary Neoplasms ExperimentalImmunotherapyNADXenograft Model Antitumor AssaysHematopoiesisMice Inbred C57BL030104 developmental biologychemistrybiology.proteinCancer researchMyeloid-derived Suppressor CellNAD+ kinaseBone marrowCancer Research
researchProduct

Abilities of berberine and chemically modified berberines to interact with metformin and inhibit proliferation of pancreatic cancer cells.

2019

Abstract Pancreatic cancer is devastating cancer worldwide with few if any truly effective therapies. Pancreatic cancer has an increasing incidence and may become the second leading cause of death from cancer. Novel, more effective therapeutic approaches are needed as pancreatic cancer patients usually survive for less than a year after being diagnosed. Control of blood sugar levels by the prescription drug metformin in diseases such as diabetes mellitus has been examined in association with pancreatic cancer. While the clinical trials remain inconclusive, there is hope that certain diets and medications may affect positively the outcomes of patients with pancreatic and other cancers. Other…

0301 basic medicineCancer ResearchSettore MED/09 - Medicina Internaendocrine system diseasesBerberineSignal transduction inhibitorsBlood sugarPharmacologyAMP-Activated Protein KinasesBerberine; PDAC; Signal transduction inhibitors; TP5303 medical and health scienceschemistry.chemical_compound0302 clinical medicineBerberineMETFORMINAPancreatic cancerDiabetes mellitusGeneticsmedicineHumansTP53Signal transduction inhibitorMolecular BiologyCell Proliferationbusiness.industryPDACCancerAMPKmedicine.diseaseMetforminMetforminNeoplasm ProteinsPancreatic Neoplasms030104 developmental biologychemistry030220 oncology & carcinogenesisCancer cellMolecular Medicinebusinessmedicine.drugAdvances in biological regulation
researchProduct

Targeting COPZ1 non-oncogene addiction counteracts the viability of thyroid tumor cells

2017

Abstract Thyroid carcinoma is generally associated with good prognosis, but no effective treatments are currently available for aggressive forms not cured by standard therapy. To find novel therapeutic targets for this tumor type, we had previously performed a siRNA-based functional screening to identify genes essential for sustaining the oncogenic phenotype of thyroid tumor cells, but not required to the same extent for the viability of normal cells (non-oncogene addiction paradigm). Among those, we found the coatomer protein complex ζ1 (COPZ1) gene, which is involved in intracellular traffic, autophagy and lipid homeostasis. In this paper, we investigated the mechanisms through which COPZ…

0301 basic medicineCancer ResearchTime FactorsCOPZ1ApoptosisCOPZ1Thyroid cancerThyroid NeoplasmThyroidRNAi TherapeuticCell death; COPZ1; Non-oncogene addiction; Thyroid carcinoma; Animals; Apoptosis; Autophagy; Cell Line Tumor; Cell Survival; Coatomer Protein; Endoplasmic Reticulum Stress; Female; Gene Expression Regulation Neoplastic; Humans; Mice Nude; RNA Interference; Signal Transduction; Thyroid Neoplasms; Time Factors; Transfection; Tumor Burden; Unfolded Protein Response; Xenograft Model Antitumor Assays; RNAi Therapeutics; Oncology; Cancer ResearchEndoplasmic Reticulum StressOncogene AddictionTumor BurdenGene Expression Regulation Neoplasticmedicine.anatomical_structureOncologyFemaleRNA InterferenceNon-oncogene addictionHumanSignal TransductionCell deathProgrammed cell deathXenograft Model Antitumor AssayTime FactorCell SurvivalMice NudeBiologyTransfectionCoatomer ProteinThyroid carcinomaThyroid carcinoma03 medical and health sciencesCell Line TumorAutophagymedicineAnimalsHumansThyroid NeoplasmsEndoplasmic Reticulum StreAnimalAutophagyApoptosimedicine.diseaseXenograft Model Antitumor AssaysRNAi Therapeutics030104 developmental biologyImmunologyUnfolded Protein ResponseCancer researchUnfolded protein response
researchProduct