Search results for " TNF"

showing 10 items of 58 documents

Cyclooxygenase-2 inhibition induces apoptosis signaling via death receptors and mitochondria in hepatocellular carcinoma.

2006

AbstractInhibition of cyclooxygenase (COX)-2 elicits chemopreventive and therapeutic effects in solid tumors that are coupled with the induction of apoptosis in tumor cells. We investigated the mechanisms by which COX-2 inhibition induces apoptosis in hepatocellular carcinoma (HCC) cells. COX-2 inhibition triggered expression of the CD95, tumor necrosis factor (TNF)-R, and TNF-related apoptosis-inducing ligand (TRAIL)-R1 and TRAIL-R2 death receptors. Addition of the respective specific ligands further increased apoptosis, indicating that COX-2 inhibition induced the expression of functional death receptors. Overexpression of a dominant-negative Fas-associated death domain mutant reduced COX…

Cancer Researchmedicine.medical_specialtyProgrammed cell deathCarcinoma HepatocellularApoptosisMitochondria LiverBiologyTransfectionReceptors Tumor Necrosis FactorInternal medicineCell Line TumormedicineHumansfas ReceptorDeath domainInhibitor of apoptosis domainSulfonamidesCyclooxygenase 2 InhibitorsIntrinsic apoptosisLiver NeoplasmsFas receptorReceptors TNF-Related Apoptosis-Inducing LigandEndocrinologyOncologyUVB-induced apoptosisApoptosisCelecoxibCyclooxygenase 2Cancer researchPyrazolesSignal transductionSignal TransductionCancer research
researchProduct

The Synthetic Cannabinoid WIN 55,212-2 Sensitizes Hepatocellular Carcinoma Cells to Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)-I…

2010

In this article, we demonstrate that the synthetic cannabinoid R-(+)-(2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrol[1,2,3-de]-1,4-benzoxazin-6-yl)-(1-naphthalenyl) methanone mesylate (WIN 55,212-2) sensitizes human hepatocellular carcinoma (HCC) cells to apoptosis mediated by tumor necrosis-related apoptosis inducing ligand (TRAIL). The apoptotic mechanism induced by treatment with WIN/TRAIL combination involved the loss of the mitochondrial transmembrane potential and led to the activation of caspases. In HCC cells, WIN treatment induced the up-regulation of TRAIL death receptor DR5, an effect that seemed to be related to the increase in the level of p8 and CHOP, two factors implicat…

Carcinoma HepatocellularDNA ComplementaryMorpholinesApoptosisNaphthalenesCHOPMembrane PotentialsTNF-Related Apoptosis-Inducing LigandCell Line TumorSurvivinmedicineHumansWIN 55212-2Protein kinase BTranscription factorCaspaseDNA PrimersPharmacologybiologyCannabinoidsReverse Transcriptase Polymerase Chain ReactionLiver NeoplasmsGene AmplificationDNA NeoplasmFlow CytometryBenzoxazinesReceptors TNF-Related Apoptosis-Inducing LigandApoptosisMitochondrial MembranesImmunologybiology.proteinCancer researchMolecular MedicineTumor necrosis factor alphaTranscription Factor CHOPmedicine.drugMolecular Pharmacology
researchProduct

Chemotherapy Sensitizes Colon Cancer Initiating Cells to Vγ9Vδ2 T Cell-Mediated Cytotoxicity

2013

Colon cancer comprises a small population of cancer initiating stem cells (CIC) that is responsible for tumor maintenance and resistance to anti-cancer therapies, possibly allowing for tumor recapitulation once treatment stops. Combinations of immune-based therapies with chemotherapy and other anti-tumor agents may be of significant clinical benefit in the treatment of colon cancer. However, cellular immune-based therapies have not been experimented yet in the population of colon CICs. Here, we demonstrate that treatment with low concentrations of commonly used chemotherapeutic agents, 5- fluorouracyl and doxorubicin, sensitize colon CICs to Vc9Vd2 T cell cytotoxicity. Vc9Vd2 T cell cytotox…

Cytotoxicity ImmunologicColorectal cancermedicine.medical_treatmentCancer TreatmentGene ExpressionPharmacologyTNF-Related Apoptosis-Inducing LigandCancer immunotherapyBasic Cancer ResearchImmune Responseeducation.field_of_studyMultidisciplinaryT CellsQColon AdenocarcinomaRReceptors Antigen T-Cell gamma-deltamedicine.anatomical_structureOncologyNK Cell Lectin-Like Receptor Subfamily KColonic NeoplasmsNeoplastic Stem CellsMedicineFluorouracilImmunotherapyResearch ArticleTumor ImmunologyImmune CellsScienceT cellPrimary Cell CultureImmunologyPopulationAntineoplastic AgentsAdenocarcinomaBiologyCell LineImmune systemGastrointestinal TumorsmedicineHumanseducationBiologyImmune EvasionImmunityCancers and NeoplasmsCancerImmunotherapyImmunologic Subspecialtiesmedicine.diseaseCoculture TechniquesReceptors TNF-Related Apoptosis-Inducing LigandDoxorubicinCancer researchClinical ImmunologyT cell mediated cytotoxicityT-Lymphocytes CytotoxicDR5 c9Vd2PLoS ONE
researchProduct

The histone deacetylase inhibitor suberoylanilide hydroxamic acid sensitizes human hepatocellular carcinoma cells to TRAIL-induced apoptosis by TRAIL…

2009

Abstract This paper shows that the histone deacetylase inhibitor SAHA sensitised at sub-toxic doses human hepatocellular carcinoma cells (HepG2, Hep3B and SK-Hep1) to TRAIL-induced apoptosis, while it was ineffective in primary human hepatocytes (PHHs). In particular in HCC cells SAHA increased the expression of death receptor 5 (DR5) and caused a decrement of c-Flip. These two modifications provoked in the presence of TRAIL the rapid production of TRAIL-DISC and the activation of caspase-8. Consequently SAHA/TRAIL combination induced many apoptotic events, such as a cleavage of Bid into tBid, dissipation of mitochondrial membrane potential, activation of caspase-3 with the consequent cleav…

Death Domain Receptor Signaling Adaptor ProteinsCancer Researchmedicine.medical_specialtyProgrammed cell deathCarcinoma Hepatocellularmedicine.drug_classmedicine.medical_treatmentBlotting WesternCASP8 and FADD-Like Apoptosis Regulating ProteinDown-RegulationAntineoplastic AgentsApoptosisBiologyHydroxamic AcidsHDACI TRAIL apoptosisInternal medicineSettore BIO/10 - BiochimicamedicineHumansProtein kinase BVorinostatLiver NeoplasmsHistone deacetylase inhibitorNF-kappa Bmedicine.diseaseReceptors TNF-Related Apoptosis-Inducing LigandCytokineEndocrinologyOncologyDrug Resistance NeoplasmApoptosisHepatocellular carcinomaCancer researchTumor necrosis factor alphaSignal transductionProto-Oncogene Proteins c-akt
researchProduct

TRAIL Triggers CRAC-Dependent Calcium Influx and Apoptosis through the Recruitment of Autophagy Proteins to Death-Inducing Signaling Complex

2021

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively kills various cancer cell types, but also leads to the activation of signaling pathways that favor resistance to cell death. Here, we investigated the as yet unknown roles of calcium signaling and autophagy regulatory proteins during TRAIL-induced cell death in leukemia cells. Taking advantage of the Gene Expression Profiling Interactive Analysis (GEPIA) project, we first found that leukemia patients present a unique TRAIL receptor gene expression pattern that may reflect their resistance to TRAIL. The exposure of NB4 acute promyelocytic leukemia cells to TRAIL induces intracellular Ca2+ influx through a calcium rel…

Death Domain Receptor Signaling Adaptor ProteinsautophagyQH301-705.5p62/SQSTM1Autophagy-Related ProteinsApoptosisTretinoin[SDV.CAN]Life Sciences [q-bio]/CancerEndoplasmic ReticulumArticleTNF-Related Apoptosis-Inducing LigandJurkat Cells[SDV.CAN] Life Sciences [q-bio]/CancerHomeostasisHumanscancerBiology (General)ATRASequence Analysis RNAATRA; ATG7; autophagy; cancer; CRAC channels; DISC; leukemia; ORAI1; p62/SQSTM1; resistance to therapyleukemiaGeneral MedicineDISCORAI1Receptors TNF-Related Apoptosis-Inducing Ligand[SDV.AEN] Life Sciences [q-bio]/Food and NutritionCytoprotectionDrug Resistance Neoplasmresistance to therapyCalciumCalcium ChannelsCRAC channelsATG7[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition
researchProduct

LE INFEZIONI IN CORSO DI TERAPOIA ANTI TNF-ALFA

2012

INFEZIONI FARMACI ANTI TNF-ALFA
researchProduct

Immune-inflammatory and metabolic effects of high dose furosemide plus hypertonic saline solution (HSS) treatment in cirrhotic subjects with refracto…

2016

Introduction Patients with chronic liver diseases are usually thin as a result of hypermetabolism and malnutrition expressed by reduced levels of leptin and impairment of other adyponectins such as visfatin. Aims We evaluated the metabolic and inflammatory effects of intravenous high-dose furosemide plus hypertonic saline solutions (HSS) compared with repeated paracentesis and a standard oral diuretic schedule, in patients with cirrhosis and refractory ascites. Methods 59 consecutive cirrhotic patients with refractory ascites unresponsive to outpatient treatment. Enrolled subjects were randomized to treatment with intravenous infusion of furosemide (125-250mg⁄bid) plus small volumes of HSS …

Liver CirrhosisMaleLeptinCirrhosisPhysiologyPeptide Hormonesmedicine.medical_treatmentdiureticlcsh:MedicineVisfatinPathology and Laboratory MedicineFurosemide; Hypertonic Saline Solution; TNF-alpha; IL-1beta; IL-6; ANP; BNP; Visfatin; Leptin; cirrhosis; refractory ascites; paracentesis; diureticBiochemistryGastroenterology0302 clinical medicineRecurrenceFurosemideImmune PhysiologyMedicine and Health SciencesParacentesisDiureticslcsh:ScienceImmune ResponseSalineHypertonicInnate Immune SystemMultidisciplinarymedicine.diagnostic_testLiver DiseasesPhysicsLeptinrefractory asciteAscitesClassical MechanicsFurosemideHematologyMiddle AgedBody FluidsBloodTreatment OutcomeCirrhosis030220 oncology & carcinogenesisPhysical SciencesHypermetabolismCytokinesAdministration IntravenousFemale030211 gastroenterology & hepatologyAnatomyInflammation MediatorsANPResearch ArticleTNF-alphamedicine.drugparacentesimedicine.medical_specialtyInflammatory DiseasesImmunologyGastroenterology and HepatologyBlood Plasma03 medical and health sciencesSigns and SymptomsDiagnostic MedicineOsmotic PressureInternal medicinePressuremedicineTonicityHumansAgedInflammationSaline Solution HypertonicIL-6business.industrylcsh:RBiology and Life SciencesMolecular DevelopmentIL-1betamedicine.diseaseHormonesHypertonic salineEndocrinologyImmune Systemlcsh:QHypertonic Saline SolutionDiureticbusinessBiomarkersDevelopmental BiologyBNPcirrhosi
researchProduct

Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2.

2006

International audience; Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family that induces cancer cell death by apoptosis with some selectivity. TRAIL-induced apoptosis is mediated by the transmembrane receptors death receptor 4 (DR4) (also known as TRAIL-R1) and DR5 (TRAIL-R2). TRAIL can also bind decoy receptor 1 (DcR1) (TRAIL-R3) and DcR2 (TRAIL-R4) that fail to induce apoptosis since they lack and have a truncated cytoplasmic death domain, respectively. In addition, DcR1 and DcR2 inhibit DR4- and DR5-mediated, TRAIL-induced apoptosis and we demonstrate here that this occurs through distinct mechanisms. While DcR1 prevents the assembly of the…

MESH : Hela CellsMESH: Membrane GlycoproteinsMESH: Membrane MicrodomainsDecoy Receptor 1ApoptosisMESH : Membrane GlycoproteinsReceptors Tumor Necrosis FactorTNF-Related Apoptosis-Inducing LigandMESH : TNF-Related Apoptosis-Inducing LigandJurkat Cells0302 clinical medicineMESH : Tumor Necrosis Factor Decoy ReceptorsMESH: Jurkat CellsDecoy receptorsReceptorCells CulturedMESH : Jurkat CellsMESH : Tumor Necrosis Factor-alpha0303 health sciencesMembrane GlycoproteinsMESH : Protein BindingArticlesMESH : Tumor Necrosis Factor Receptor-Associated Peptides and ProteinsTumor Necrosis Factor Receptor-Associated Peptides and ProteinsCell biology030220 oncology & carcinogenesisCaspasesDeath-inducing signaling complexApoptosis/drug effects; Apoptosis Regulatory Proteins/antagonists & inhibitors; Apoptosis Regulatory Proteins/pharmacology; Caspases/metabolism; Cells Cultured; Death Domain Receptor Signaling Adaptor Proteins; Enzyme Activation/drug effects; GPI-Linked Proteins; HeLa Cells; Humans; Jurkat Cells; Membrane Glycoproteins/antagonists & inhibitors; Membrane Glycoproteins/pharmacology; Membrane Microdomains/drug effects; Protein Binding/drug effects; Receptors TNF-Related Apoptosis-Inducing Ligand; Receptors Tumor Necrosis Factor/metabolism; TNF-Related Apoptosis-Inducing Ligand; Tumor Necrosis Factor Decoy Receptors; Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/metabolism; Tumor Necrosis Factor-alpha/antagonists & inhibitors; Tumor Necrosis Factor-alpha/pharmacologyMESH : Apoptosis Regulatory ProteinsMESH: TNF-Related Apoptosis-Inducing LigandProtein BindingMESH: Cells CulturedDeath Domain Receptor Signaling Adaptor ProteinsMESH: Enzyme ActivationBiologyMESH: Tumor Necrosis Factor Receptor-Associated Peptides and ProteinsGPI-Linked Proteins03 medical and health sciencesMembrane MicrodomainsCell surface receptorMESH : Cells Cultured[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyReceptors Tumor Necrosis Factor Member 10cHumansMESH: Protein Binding[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH: Receptors TNF-Related Apoptosis-Inducing LigandMESH : Receptors TNF-Related Apoptosis-Inducing LigandMolecular Biology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular Biology030304 developmental biologyDeath domainMESH: CaspasesMESH: HumansTumor Necrosis Factor-alphaMESH: Apoptosis Regulatory ProteinsMESH: ApoptosisMESH : HumansCell BiologyMESH: Receptors Tumor Necrosis FactorMESH: Tumor Necrosis Factor Decoy ReceptorsMESH : Receptors Tumor Necrosis FactorEnzyme ActivationMESH: Hela CellsReceptors TNF-Related Apoptosis-Inducing LigandTumor Necrosis Factor Decoy ReceptorsApoptosisMESH: Tumor Necrosis Factor-alphaMESH : Membrane MicrodomainsMESH : CaspasesApoptosis Regulatory ProteinsMESH : Enzyme ActivationMESH : ApoptosisMESH : Death Domain Receptor Signaling Adaptor ProteinsTumor Necrosis Factor Decoy ReceptorsHeLa CellsMESH: Death Domain Receptor Signaling Adaptor Proteins
researchProduct

Chemotherapy overcomes TRAIL-R4-mediated TRAIL resistance at the DISC level

2011

International audience; TNF-related apoptosis-inducing ligand or Apo2L (Apo2L/TRAIL) is a promising anti-cancer drug owing to its ability to trigger apoptosis by binding to TRAIL-R1 or TRAIL-R2, two membrane-bound receptors that are often expressed by tumor cells. TRAIL can also bind non-functional receptors such as TRAIL-R4, but controversies still exist regarding their potential to inhibit TRAIL-induced apoptosis. We show here that TRAIL-R4, expressed either endogenously or ectopically, inhibits TRAIL-induced apoptosis. Interestingly, the combination of chemotherapeutic drugs with TRAIL restores tumor cell sensitivity to apoptosis in TRAIL-R4-expressing cells. This sensitization, which ma…

MESH: CASP8 and FADD-Like Apoptosis Regulating ProteinMESH : Antineoplastic Combined Chemotherapy ProtocolsCASP8 and FADD-Like Apoptosis Regulating ProteinTRAILApoptosisMESH : Models BiologicalMitochondrionMESH : RNA Small InterferingMESH: Caspase 8TNF-Related Apoptosis-Inducing LigandMESH : TNF-Related Apoptosis-Inducing LigandMESH : Tumor Necrosis Factor Decoy Receptors0302 clinical medicineRNA interferenceNeoplasmsAntineoplastic Combined Chemotherapy ProtocolsMESH: RNA Small InterferingMESH: NeoplasmsRNA Small InterferingReceptorSensitizationCaspase 80303 health sciencesMESH : Caspase 8MESH: Drug Resistance Neoplasm3. Good healthCell biologyMESH: Antineoplastic Combined Chemotherapy ProtocolsMESH : Drug Resistance Neoplasmmedicine.anatomical_structure030220 oncology & carcinogenesisRNA InterferenceMESH : GPI-Linked ProteinsMESH: TNF-Related Apoptosis-Inducing LigandDeath Domain Receptor Signaling Adaptor ProteinsProgrammed cell deathMESH: Cell Line Tumorc-FLIPMESH: RNA InterferenceBiologyGPI-Linked ProteinsCaspase 8Models Biological03 medical and health sciencesCell Line TumorReceptors Tumor Necrosis Factor Member 10cmedicineTRAIL-R4HumanscancerChemotherapy[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH: Receptors TNF-Related Apoptosis-Inducing LigandMESH : Receptors TNF-Related Apoptosis-Inducing Ligand[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyMolecular Biology030304 developmental biologyOriginal PaperMESH: HumansMESH : Cell Line TumorMESH: ApoptosisMESH : HumansMESH: Models BiologicalMESH : CASP8 and FADD-Like Apoptosis Regulating ProteinCell BiologyMESH: Tumor Necrosis Factor Decoy ReceptorsMESH : NeoplasmsReceptors TNF-Related Apoptosis-Inducing LigandTumor Necrosis Factor Decoy ReceptorsDrug Resistance NeoplasmApoptosisMESH : RNA InterferenceMESH: GPI-Linked ProteinsMESH : ApoptosisMESH : Death Domain Receptor Signaling Adaptor ProteinsMESH: Death Domain Receptor Signaling Adaptor ProteinsTumor Necrosis Factor Decoy Receptors
researchProduct

Regulating TRAIL Receptor-Induced Cell Death at the Membrane: A Deadly Discussion

2011

Article Open access plus; International audience; The use of TRAIL/APO2L and monoclonal antibodies targeting TRAIL receptors for cancer therapy holds great promise, due to their ability to restore cancer cell sensitivity to apoptosis in association with conventional chemotherapeutic drugs in a large variety of tumors. TRAIL-induced cell death is tightly regulated right from the membrane and at the DISC (Death-Inducing Signaling Complex) level. The following patent and literature review aims to present and highlight recent findings of the deadly discussion that determines tumor cell fate upon TRAIL engagement.

MESH: Cell DeathMESH: Signal TransductionCancer ResearchApoptosisTRAILMESH : Models BiologicalscaffoldCell membrane0302 clinical medicineDrug DiscoveryMESH: AnimalsPharmacology (medical)Receptordeath effector domain0303 health sciencesCell DeathGeneral MedicineTRAIL-R4.3. Good healthCell biologymedicine.anatomical_structureOncology030220 oncology & carcinogenesisSignal transductionMESH : Apoptosis Regulatory ProteinsSignal TransductionProgrammed cell deathc-FLIPdeath domainmedicine.drug_classMESH : Cell MembraneCancer therapyBiologyMonoclonal antibodyModels BiologicalArticle03 medical and health sciencesmedicineAnimalsHumansChemotherapy[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH: Receptors TNF-Related Apoptosis-Inducing LigandMESH : Receptors TNF-Related Apoptosis-Inducing Ligand[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular Biology030304 developmental biologyMESH : Signal TransductionMESH: HumansMESH: Apoptosis Regulatory ProteinsMESH: ApoptosisMESH : HumansCell MembraneMESH: Models BiologicalDISCReceptors TNF-Related Apoptosis-Inducing LigandApoptosisMESH : Cell DeathFADDCancer cellMESH : AnimalsApoptosis Regulatory ProteinsMESH : ApoptosisMESH: Cell MembraneRecent Patents on Anti-Cancer Drug Discovery
researchProduct