Search results for " Tolerance"

showing 10 items of 760 documents

Activation of silent mating type information regulation 2 homolog 1 by human chorionic gonadotropin exerts a therapeutic effect on hepatic injury and…

2017

Incidence and prevalence of inflammatory liver diseases has increased over the last years, but therapeutic options are limited. Pregnancy induces a state of immune tolerance, which can result in spontaneous improvement of clinical symptoms of certain autoimmune diseases including autoimmune hepatitis (AIH). We investigated the immune-suppressive mechanisms of the human pregnancy hormone, chorionic gonadotropin (hCG), in the liver. hCG signaling activates silent mating type information regulation 2 homolog 1 (SIRT1), which deacetylates forkhead box o3 (FOXO3a), leading to repression of proapoptotic gene expression, because the immunosuppressive consequence attributed to the absence of caspas…

0301 basic medicineCD4-Positive T-Lymphocytesmedicine.medical_specialtymedicine.drug_classInflammationAutoimmune hepatitisChorionic GonadotropinSensitivity and SpecificityHuman chorionic gonadotropinImmune tolerance03 medical and health sciencesMiceRandom Allocation0302 clinical medicineImmune systemSirtuin 1Internal medicinemedicineJournal ArticleAnimalsHumansComparative StudyCells CulturedMice Inbred BALB CHepatologybusiness.industryCaspase 3Forkhead Box Protein O3Hepatologymedicine.diseaseDisease Models AnimalHepatitis Autoimmune030104 developmental biologyEndocrinology030220 oncology & carcinogenesisImmunologyHepatocytesFemaleGonadotropinmedicine.symptombusinessHormoneSignal TransductionHepatology
researchProduct

Common extracellular matrix regulation of myeloid cell activity in the bone marrow and tumor microenvironments

2017

The complex interaction between cells undergoing transformation and the various stromal and immunological cell components of the tumor microenvironment (TME) crucially influences cancer progression and diversification, as well as endowing clinical and prognostic significance. The immunosuppression characterizing the TME depends on the recruitment and activation of different cell types including regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages. Less considered is the non-cellular component of the TME. Here, we focus on the extracellular matrix (ECM) regulatory activities that, within the TME, actively contribute to many aspects of tumor progression, acti…

0301 basic medicineCancer ResearchCell typeStromal cellMyeloidCarcinogenesisImmunologyBiology03 medical and health sciencesBone MarrowNeoplasmsmedicineImmune ToleranceImmunology and AllergyAnimalsHumansMyeloid-Derived Suppressor CellCarcinogenesiTumor microenvironmentAnimalMyeloid-Derived Suppressor CellsHematopoietic stem cellSPARCBone marrow nicheExtracellular matrixCell biology030104 developmental biologymedicine.anatomical_structureRegulatory myeloid suppressor cellOncologyTumor microenvironmentTumor progressionMyeloid-derived Suppressor CellBone marrow niche; Extracellular matrix; Regulatory myeloid suppressor cells; SPARC; Tumor microenvironment; Animals; Bone Marrow; Carcinogenesis; Extracellular Matrix; Humans; Immune Tolerance; Myeloid-Derived Suppressor Cells; Neoplasms; Tumor Escape; Tumor MicroenvironmentNeoplasmTumor Escapesense organsBone marrowHuman
researchProduct

Tumor-Derived Prostaglandin E2 Promotes p50 NF-κB-Dependent Differentiation of Monocytic MDSCs

2020

Abstract Myeloid-derived suppressor cells (MDSC) include immature monocytic (M-MDSC) and granulocytic (PMN-MDSC) cells that share the ability to suppress adaptive immunity and to hinder the effectiveness of anticancer treatments. Of note, in response to IFNγ, M-MDSCs release the tumor-promoting and immunosuppressive molecule nitric oxide (NO), whereas macrophages largely express antitumor properties. Investigating these opposing activities, we found that tumor-derived prostaglandin E2 (PGE2) induces nuclear accumulation of p50 NF-κB in M-MDSCs, diverting their response to IFNγ toward NO-mediated immunosuppression and reducing TNFα expression. At the genome level, p50 NF-κB promoted binding …

0301 basic medicineCancer ResearchCellular differentiationProstaglandin E2 receptormedicine.medical_treatmentMelanoma ExperimentalApoptosisSettore MED/08 - Anatomia PatologicaNitric OxideDinoprostoneMonocytesInterferon-gammaMice03 medical and health sciences0302 clinical medicineImmune systemOxytocicsImmune ToleranceTumor Cells CulturedmedicineAnimalsHumansProstaglandin E2Cell ProliferationChemistryMyeloid-Derived Suppressor CellsNF-kappa B p50 SubunitCell DifferentiationImmunotherapyAcquired immune systemPancreatic Neoplasms030104 developmental biologyOncologyp50 NF-κB differentiation of monocytic MDSC.030220 oncology & carcinogenesisMyeloid-derived Suppressor CellCancer researchTumor necrosis factor alphaColorectal Neoplasmsmedicine.drugCancer Research
researchProduct

Knockdown of hnRNPK leads to increased DNA damage after irradiation and reduces survival of tumor cells.

2017

Radiotherapy is an important treatment option in the therapy of multiple tumor entities among them head and neck squamous cell carcinoma (HNSCC). However, the success of radiotherapy is limited by the development of radiation resistances. Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is a cofactor of p53 and represents a potential target for radio sensitization of tumor cells. In this study, we analyzed the impact of hnRNPK on the DNA damage response after gamma irradiation. By yH2AX foci analysis, we found that hnRNPK knockdown increases DNA damage levels in irradiated cells. Tumor cells bearing a p53 mutation showed increased damage levels and delayed repair. Knockdown of hnRNPK appl…

0301 basic medicineCancer ResearchDNA damageCell Survivalmedicine.medical_treatmentmedicine.disease_causeRadiation ToleranceHeterogeneous-Nuclear Ribonucleoprotein KHistones03 medical and health sciences0302 clinical medicineCell Line TumormedicineCarcinomaGene Knockdown TechniquesHumansMutationGene knockdownChemistrySquamous Cell Carcinoma of Head and NeckStem CellsGeneral Medicinemedicine.diseaseHead and neck squamous-cell carcinomaRadiation therapy030104 developmental biologyCell cultureHead and Neck Neoplasms030220 oncology & carcinogenesisGene Knockdown TechniquesCancer researchCarcinoma Squamous CellTumor Suppressor Protein p53DNA DamageCarcinogenesis
researchProduct

Comparative analysis of the effects of a sphingosine kinase inhibitor to temozolomide and radiation treatment on glioblastoma cell lines.

2017

ABSTRACT Glioblastoma multiforme (GBM) exhibits high resistance to the standard treatment of temozolomide (TMZ) combined with radiotherapy, due to its remarkable cell heterogeneity. Accordingly, there is a need to target alternative molecules enhancing specific GBM autocrine or paracrine mechanisms and amplifying the effect of standard treatment. Sphingosine 1-phosphate (S1P) is such a lipid target molecule with an important role in cell invasion and proliferation. Sphingosine kinase inhibitors (SKI) prevent S1P formation and induce increased production of reactive oxygen species (ROS), which may potentiate radiation cytotoxicity. We analyzed the effect of SKI singular versus combined treat…

0301 basic medicineCancer ResearchRadiation-Sensitizing AgentsCell SurvivalCellSphingosine kinaseApoptosistemozolomideBiologyRadiation Tolerancesphingosine kinase inhibition03 medical and health scienceschemistry.chemical_compoundCell Line TumorX-raysmedicineHumansGPx1oxidative stressCytotoxicityAutocrine signallingAntineoplastic Agents AlkylatingPharmacologychemistry.chemical_classificationReactive oxygen speciesTemozolomideSphingosineBrain NeoplasmsDrug SynergismChemoradiotherapyMolecular biologyDacarbazinePhosphotransferases (Alcohol Group Acceptor)030104 developmental biologymedicine.anatomical_structureOncologychemistryCell cultureradiosensitivityCancer researchMolecular MedicineDrug Screening Assays AntitumorGlioblastomamedicine.drugResearch PaperCancer biologytherapy
researchProduct

Transcriptome analysis and codominant markers development in caper, a drought tolerant orphan crop with medicinal value.

2019

AbstractCaper (Capparis spinosa L.) is a xerophytic shrub cultivated for its flower buds and fruits, used as food and for their medicinal properties. Breeding programs and even proper taxonomic classification of the genus Capparis has been hampered so far by the lack of reliable genetic information and molecular markers. Here, we present the first genomic resource for C. spinosa, generated by transcriptomic approach and de novo assembly. The sequencing effort produced nearly 80 million clean reads assembled into 124,723 unitranscripts. Careful annotation and comparison with public databases revealed homologs to genes with a key role in important metabolic pathways linked to abiotic stress t…

0301 basic medicineCapparisAgricultural geneticsabiotic stressSAPsPlant geneticsScienceDrought toleranceSequence assemblyComputational biologyBiologyArticleTranscriptome03 medical and health sciences0302 clinical medicinefoodStress PhysiologicalEST-SSRGeneorphan cropPlant Proteinsde novo leaf transcriptomeMultidisciplinaryPlants MedicinalPhenylpropanoidAbiotic stressSettore BIO/02 - Botanica SistematicaCapparis spinosaGene Expression ProfilingCaper Capparis spinosa Codominant markers Transcriptome analysis Orphan cropQRfood and beveragesbiology.organism_classificationfood.foodCapparis spinosa L.DroughtsCapparis030104 developmental biologyNGSMedicineTranscriptome030217 neurology & neurosurgeryBiomarkersMetabolic Networks and PathwaysScientific reports
researchProduct

IL-10-Modulated Human Dendritic Cells for Clinical Use: Identification of a Stable and Migratory Subset with Improved Tolerogenic Activity.

2015

Abstract Dendritic cells (DCs) are key regulators of protective immune responses and tolerance to (self-)Ags. Therefore, the scientific rationale for the use of tolerogenic DC therapy in the fields of allergies, autoimmunity, and transplantation medicine is strong. In this study, we analyzed the tolerogenic capacity of IL-10–modulated DC (IL-10DC) subpopulations to identify a DC subset that combines potent immunosuppressive activities with valuable immune properties for clinical implementation. IL-10DCs consist of two phenotypically distinct subpopulations: CD83highCCR7+ IL-10DCs and CD83lowCCR7− IL-10DCs. Suppressor assays with activated effector T cells revealed that CD4+ regulatory T cel…

0301 basic medicineChemokineReceptors CCR7medicine.medical_treatmentImmunologyImmunoglobulinsBiologymedicine.disease_causeLymphocyte ActivationT-Lymphocytes RegulatoryAutoimmunity03 medical and health sciencesImmune systemAntigens CDCell MovementmedicineImmune ToleranceImmunology and AllergyHumansIL-2 receptorCells CulturedInflammationMembrane GlycoproteinsChemokine CCL21Interleukin-2 Receptor alpha SubunitCell DifferentiationDendritic CellsInterleukin-10Interleukin 10Tolerance induction030104 developmental biologyCytokineImmunologybiology.proteinImmunotherapyCCL21Journal of immunology (Baltimore, Md. : 1950)
researchProduct

Aneuploidy and Ethanol Tolerance in Saccharomyces cerevisiae

2019

Response to environmental stresses is a key factor for microbial organism growth. One of the major stresses for yeasts in fermentative environments is ethanol. Saccharomyces cerevisiae is the most tolerant species in its genus, but intraspecific ethanol-tolerance variation exists. Although, much effort has been done in the last years to discover evolutionary paths to improve ethanol tolerance, this phenotype is still hardly understood. Here, we selected five strains with different ethanol tolerances, and used comparative genomics to determine the main factors that can explain these phenotypic differences. Surprisingly, the main genomic feature, shared only by the highest ethanol-tolerant st…

0301 basic medicineChromosome IIIlcsh:QH426-470Saccharomyces cerevisiaeAneuploidycomparative genomicsSaccharomyces cerevisiaeEthanol toleranceBiologyTranscriptome03 medical and health sciences0302 clinical medicineGeneticsmedicineaneuploidyGenetics (clinical)Wine yeastsGeneticsComparative genomicsComparative genomicsStrain (biology)chromosome IIIChromosomewine yeastsAneuploidybiology.organism_classificationmedicine.diseasePhenotypeethanol tolerancelcsh:Genetics030104 developmental biology030220 oncology & carcinogenesisMolecular MedicinePloidyFrontiers in Genetics
researchProduct

IL‐10‐producing B cells are characterized by a specific methylation signature

2019

Among the family of regulatory B cells, the subset able to produce interleukin-10 (IL-10) is the most studied, yet its biology is still a matter of investigation. The DNA methylation profiling of the il-10 gene locus revealed a novel epigenetic signature characterizing murine B cells ready to respond through IL-10 synthesis: a demethylated region located 4.5 kb from the transcription starting site (TSS), that we named early IL10 regulatory region (eIL10rr). This feature allows to distinguish B cells that are immediately prone and developmentally committed to IL-10 production from those that require a persistent stimulation to exert an IL-10-mediated regulatory function. These late IL-10 pro…

0301 basic medicineChronic lymphocytic leukemiaRegulatory B cellsImmunologyB-Lymphocyte SubsetsLymphoma Mantle-CellRegulatory Sequences Nucleic AcidBiologyLymphocyte ActivationB-cell malignanciesMice03 medical and health scienceschemistry.chemical_compoundInterleukin 100302 clinical medicineTranscription (biology)Immune ToleranceTumor MicroenvironmentmedicineAnimalsHumansImmunology and AllergyB cells; B-cell malignancies; DNA methylation; epigenetics; Interleukin 10; Immunology and Allergy; ImmunologyEpigeneticsB-Lymphocytes RegulatoryB cellsB cellDNA methylationepigeneticsGene Expression ProfilingB cells; B-cell malignancies; DNA methylation; epigenetics; Interleukin 10Cell DifferentiationMethylationmedicine.diseaseLeukemia Lymphocytic Chronic B-CellImmunity HumoralInterleukin-10Cell biologyMice Inbred C57BLInterleukin 10030104 developmental biologychemistryDNA methylationB-cell malignancieFemaleepigeneticDNA030215 immunologyEuropean Journal of Immunology
researchProduct

Enterocyte Purge and Rapid Recovery Is a Resilience Reaction of the Gut Epithelium to Pore-Forming Toxin Attack.

2016

International audience; Besides digesting nutrients, the gut protects the host against invasion by pathogens. Enterocytes may be subjected to damage by both microbial and host defensive responses, causing their death. Here, we report a rapid epithelial response that alleviates infection stress and protects the enterocytes from the action of microbial virulence factors. Intestinal epithelia exposed to hemolysin, a pore-forming toxin secreted by Serratia marcescens, undergo an evolutionarily conserved process of thinning followed by the recovery of their initial thickness within a few hours. In response to hemolysin attack, Drosophila melanogaster enterocytes extrude most of their apical cyto…

0301 basic medicineCytoplasmDisease toleranceSurvivalApoptosismedicine.disease_causeOral infectionHemolysin ProteinsLipid droplet[SDV.IDA]Life Sciences [q-bio]/Food engineeringMitochondrial extrusionIntestinal MucosaSerratia marcescensBacterial-infectionPore-forming toxinbiologyCell DeathMicrovilliPlasma-membrane[ SDV.IDA ] Life Sciences [q-bio]/Food engineeringGut EpitheliumMitochondriamedicine.anatomical_structureDrosophila melanogasterEnterocyteVirulence FactorsVarroidaeSerratia-marcescensBacterial ToxinsVirulenceMicrobiologyMicrobiologySerratia Infections03 medical and health sciencesVirologymedicineAnimalsApical cytoplasmDefense strategyDrosophila cyclin jToxinbiology.organism_classificationLipid dropletsDisease Models AnimalIntestinal Diseases030104 developmental biologyEnterocytesSerratia marcescensParasitologyDigestive SystemCell hostmicrobe
researchProduct