Search results for " X-Rays: Stars"

showing 10 items of 38 documents

Flares from small to large: X-ray spectroscopy of Proxima Centauri with XMM-Newton

2003

(Abridged) We report results from a comprehensive study of the nearby M dwarf Proxima Centauri with the XMM-Newton satellite. We find strongly variable coronal X-ray emission, with flares ranging over a factor of 100 in peak flux. The low-level emission is found to be continuously variable. Several weak flares are characteristically preceded by an optical burst, compatible with predictions from standard solar flare models. We propose that the U band bursts are proxies for the elusive stellar non-thermal hard X-ray bursts suggested from solar observations. A very large X-ray flare was observed in its entirety, with a peak luminosity of 3.9E28 erg/s [0.15-10 keV] and a total X-ray energy of 1…

010504 meteorology & atmospheric sciencesOpacityAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesFluxAstrophysicsAstrophysics01 natural scienceslaw.inventionLuminositylaw0103 physical sciencesAstrophysics::Solar and Stellar Astrophysicsstars: activity stars: coronae stars: individual: Proxima Centauri X-rays: starsSpectroscopy010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsSolar flareAstrophysics (astro-ph)Astronomy and AstrophysicsPlasma3. Good healthStars13. Climate actionSpace and Planetary SciencePhysics::Space PhysicsAstrophysics::Earth and Planetary AstrophysicsFlare
researchProduct

X-rays from accretion shocks in classical T Tauri stars: 2D MHD modeling and the role of local absorption

2013

AbstractIn classical T Tauri stars (CTTS) strong shocks are formed where the accretion funnel impacts with the denser stellar chromosphere. Although current models of accretion provide a plausible global picture of this process, some fundamental aspects are still unclear: the observed X-ray luminosity in accretion shocks is order of magnitudes lower than predicted; the observed density and temperature structures of the hot post-shock region are puzzling and still unexplained by models.To address these issues we performed 2D MHD simulations describing an accretion stream impacting onto the chromosphere of a CTTS, exploring different configurations and strengths of the magnetic field. From th…

Accretion MHD Stars: pre-main sequence X-rays: starsPhysicsbusiness.product_categoryAstronomyAstronomy and AstrophysicsAstrophysicsViewing angleAccretion (astrophysics)Spectral lineMagnetic fieldT Tauri starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary Sciencepre-main sequence X-rays: stars [Accretion MHD Stars]FunnelMagnetohydrodynamicsbusinessChromosphereProceedings of the International Astronomical Union
researchProduct

The Close T Tauri Binary System V4046 Sgr: Rotationally Modulated X-Ray Emission from Accretion Shocks

2012

We report initial results from a quasi-simultaneous X-ray/optical observing campaign targeting V4046 Sgr, a close, synchronous-rotating classical T Tauri star (CTTS) binary in which both components are actively accreting. V4046 Sgr is a strong X-ray source, with the X-rays mainly arising from high-density (n_e ~ 10^(11-12) cm^(-3)) plasma at temperatures of 3-4 MK. Our multiwavelength campaign aims to simultaneously constrain the properties of this X-ray emitting plasma, the large scale magnetic field, and the accretion geometry. In this paper, we present key results obtained via time-resolved X-ray grating spectra, gathered in a 360 ks XMM-Newton observation that covered 2.2 system rotatio…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral lineSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesBinary starAstrophysics::Solar and Stellar AstrophysicsEmission spectrumBinary system010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysics[PHYS]Physics [physics]accretion accretion disks stars: individual: V4046 Sgr stars: magnetic field stars: pre-main sequence stars: variables: T Tauri Herbig Ae/Be X-rays: stars010308 nuclear & particles physicsAstronomy and AstrophysicsPlasmaAccretion (astrophysics)StarsT Tauri starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics::Earth and Planetary Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars

2013

(abridged) AIMS. We investigate the dynamics and stability of post-shock plasma streaming along nonuniform stellar magnetic fields at the impact region of accretion columns. We study how the magnetic field configuration and strength determine the structure, geometry, and location of the shock-heated plasma. METHODS. We model the impact of an accretion stream onto the chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our model takes into account the gravity, the radiative cooling, and the magnetic-field-oriented thermal conduction. RESULTS. The structure, stability, and location of the shocked plasma strongly depend on the configuration and strength of the magnetic f…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesField strengthX-rays: starsAstrophysicsstars: pre-main sequence01 natural sciencesmagnetohydrodynamics (MHD)pre-main sequence X-rays: stars [accretion accretion disks instabilities magnetohydrodynamics (MHD) shock waves stars]010305 fluids & plasmasSettore FIS/05 - Astronomia E Astrofisicaaccretion0103 physical sciencesRadiative transferAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsChromosphereSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysicsaccretion disksAstronomy and AstrophysicsPlasmashock wavesAccretion (astrophysics)Magnetic fieldT Tauri starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceinstabilitiesPhysics::Space PhysicsOblique shockAstrophysics::Earth and Planetary Astrophysicsaccretion accretion disks instabilities magnetohydrodynamics (MHD) shock waves stars: pre-main sequence X-rays: stars[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

The Mouse That Roared: A Superflare from the dMe Flare Star EV Lac Detected by Swift and Konus-Wind

2010

We report on a large stellar flare from the nearby dMe flare star EV Lac observed by the Swift and Konus-Wind satellites and the Liverpool Telescope. It is the first large stellar flare from a dMe flare star to result in a Swift trigger based on its hard X-ray intensity. Its peak f_X from 0.3--100 keV of 5.3x10^-8 erg/cm2/s is nearly 7000 times larger than the star's quiescent coronal flux, and the change in magnitude in the white filter is >4.7. This flare also caused a transient increase in EV Lac's bolometric luminosity (L_bol) during the early stages of the flare, with a peak estimated L_X/L_bol ~3.1. We apply flare loop hydrodynamic modeling to the plasma parameter temporal changes …

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesFluxAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsLuminositylaw.inventionSettore FIS/05 - Astronomia E AstrofisicalawIonizationX-raysAstrophysics::Solar and Stellar AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysicsFlare starAstronomy and Astrophysicsastrofisica fisica stellare stars: activity stars: coronae stars: flare stars: individual: EV Lac stars: late-type X-rays: starsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceMagnitude (astronomy)Plasma parameterStellar PhysicAstrophysics::Earth and Planetary AstrophysicsSuperflareFlare
researchProduct

Updating the orbital ephemeris of the dipping source XB 1254-690 and the distance to the source

2017

XB 1254-690 is a dipping low mass X-ray binary system hosting a neutron star and showing type I X-ray bursts. We aim at obtaining more accurate orbital ephemeris and at constraining the orbital period derivative of the system for the first time. In addition, we want to better constrain the distance to the source in order to locate the system in a well defined evolutive scenario. We apply for the first time an orbital timing technique to XB 1254-690, using the arrival times of the dips present in the light curves that have been collected during 26 years of X-ray pointed observations performed from different space missions. We estimate the dip arrival times using a statistical method that wei…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesLagrangian pointAstrophysicsStar (graph theory)Ephemeris01 natural sciencesstars: neutron0103 physical sciencesX-rays: star010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsstars: individual (XB 1254690)Astronomy and AstrophysicsQuadratic functionAstronomy and AstrophysicOrbital periodLight curveX-rays: binarieAstrometry and celestial mechanics: ephemerideNeutron starSpace and Planetary Scienceephemerides; stars: individual (XB 1254690); stars: neutron; X-rays: binaries; X-rays: stars; Astronomy and Astrophysics; Space and Planetary Science [Astrometry and celestial mechanics]Astrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaLow Mass
researchProduct

Evidence of a non-conservative mass transfer for XTE J0929-314

2017

Context. In 1998 the first accreting millisecond pulsar, SAX J1808.4-3658, was discovered and to date 18 systems showing coherent, high frequency (> 100 Hz) pulsations in low mass X-ray binaries are known. Since their discovery, this class of sources has shown interesting and sometimes puzzling behaviours. In particular, apart from a few exceptions, they are all transient with very long X-ray quiescent periods implying a quite low averaged mass accretion rate onto the neutron star. Among these sources, XTE J0929-314 has been detected in outburst just once in about 15 years of continuous monitoring of the X-ray sky. Aims. We aim to demonstrate that a conservative mass transfer in this sys…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesStars: individual: XTE J0929-314AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesLuminosityPulsarMillisecond pulsar0103 physical sciencesX-rays: star010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsGravitational waveAstronomy and AstrophysicsAstronomy and AstrophysicGalactic planeOrbital periodX-rays: binarieStars: neutronGalaxyNeutron starSpace and Planetary Scienceindividual: XTE J0929-314; Stars: neutron; X-rays: binaries; X-rays: stars; Astronomy and Astrophysics; Space and Planetary Science [Stars]Astrophysics - High Energy Astrophysical Phenomena
researchProduct

Variable X-ray emission from the accretion shock in the classical T Tauri star V2129 Ophiuchi

2011

The soft X-ray emission from high density plasma in CTTS is associated with the accretion process. It is still unclear whether this high density cool plasma is heated in the accretion shock, or if it is coronal plasma fed/modified by the accretion process. We conducted a coordinated quasi-simultaneous optical and X-ray observing campaign of the CTTS V2129 Oph (Chandra/HETGS data to constrain the X-ray emitting plasma components, and optical observations to constrain the characteristics of accretion and magnetic field). We analyze a 200 ks Chandra/HETGS observation of V2129 Oph, subdivided into two 100 ks segments, corresponding to two different phases within one stellar rotation. The X-ray …

FOS: Physical sciencesstars: variables:X-rays: starsmagnetic fieldAstrophysicsstars: pre-main sequenceT Tauricircumstellar matterlaw.inventionX-raycircumstellar matter stars: coronae stars: individual: V2129 Oph stars: pre-main sequence X-rays: stars stars: variables: T Tauri Herbig Ae/BeSettore FIS/05 - Astronomia E AstrofisicaaccretionlawSolar and Stellar Astrophysics (astro-ph.SR)Physicsstars: coronaeLine-of-sight[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Stellar rotationHerbig Ae/Bestars: individual: V2129Astronomy and AstrophysicsPlasmaCoronal loopAccretion (astrophysics)Magnetic fieldT Tauri starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary Science[SDU]Sciences of the Universe [physics]stellar activityOphFlare
researchProduct

Detailed study of the X-ray and optical/UV orbital ephemeris of X1822-371

2011

Recent studies of the optical/UV and X-ray ephemerides of X1822-371 have found some discrepancies in the value of the orbital period derivative. Because of the importance of this value in constraining the system evolution, we comprehensively analyse all the available optical/UV/X eclipse times of this source to investigate the origin of these discrepancies. We collected all previously published X-ray eclipse times from 1977 to 2008, to which we added the eclipse time observed by Suzaku in 2006. This point is very important to cover the time gap between the last RXTE eclipse time (taken in 2003) and the most recent Chandra eclipse time (taken in 2008). Similarly we collected the optical/UV e…

High Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaX-rayFOS: Physical sciencesAstronomy and Astrophysicsneutron X-rays: binaries X-rays: stars stars: individual: X1822-371 [stars]AstrophysicsDerivativeTime gapEphemerisOrbital period01 natural sciencesSettore FIS/05 - Astronomia E AstrofisicaCover (topology)Space and Planetary Sciencestars: neutron X-rays: binaries X-rays: stars stars: individual: X1822-3710103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaVariation (astronomy)010303 astronomy & astrophysicsEclipse
researchProduct

On the observability of T Tauri accretion shocks in the X-ray band

2010

Context. High resolution X-ray observations of classical T Tauri stars (CTTSs) show a soft X-ray excess due to high density plasma (n_e=10^11-10^13 cm^-3). This emission has been attributed to shock-heated accreting material impacting onto the stellar surface. Aims. We investigate the observability of the shock-heated accreting material in the X-ray band as a function of the accretion stream properties (velocity, density, and metal abundance) in the case of plasma-beta<<1 in the post-shock zone. Methods. We use a 1-D hydrodynamic model describing the impact of an accretion stream onto the chromosphere, including the effects of radiative cooling, gravity and thermal conduction. We expl…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsRadiative coolingAstrophysics::High Energy Astrophysical Phenomenaaccretion accretion disks hydrodynamics shock waves stars: pre-main sequence X-rays: starsFOS: Physical sciencesAstronomy and AstrophysicsObservableAstrophysics::Cosmology and Extragalactic AstrophysicsPlasmaAstrophysicsThermal conductionAccretion (astrophysics)T Tauri starSettore FIS/05 - Astronomia E AstrofisicaAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceThermalAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaChromosphereSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsAstronomy & Astrophysics
researchProduct