Search results for " acoustic"
showing 10 items of 344 documents
Detecting gravitational waves from cosmological phase transitions with LISA: an update
2020
MC was funded by the Royal Society under the Newton International Fellowship program. GD would like to thank CNPq (Brazil) for financial support. MH was supported by the Science and Technology Facilities Council (grant number ST/P000819/1), and the Academy of Finland (grant number 286769). SJH was supported by the Science and Technology Facilities Council (grant number ST/P000819/1). The work of JK was supported by Department of Energy (DOE) grant DE-SC0019195 and NSF grant PHY-1719642. TK and GS are funded by the Deutsche Forschungsgemeinschaft under Germany's Excellence Strategy - EXC 2121 \Quantum Universe" - 390833306. JMN is supported by Ramon y Cajal Fellowship contract RYC-2017-22986…
Photo-acoustic phase-delayed excitation of guided waves in coated bone phantoms
2013
Photo-acoustic skeletal quantitative ultrasound enables assessment of the fundamental flexural guided wave (FFGW) propagating in bone. This mode, consistent with the F(1,1) tube mode can now be measured through a coating of soft tissue. Interference due to ultrasound propagation in the soft tissue surrounding the bone is reduced by using phase-delayed ultrasound excitation. Photo-acoustic phase-delayed excitation was done on five axisymmetric bone phantoms (1-5 mm wall thickness), coated by a 5 mm thick soft-tissue mimicking layer. A fiber head comprising a linear array of four optical fibers (400 μm diameter), illuminated by pulsed laser diodes (905 nm wavelength) generated ultrasound. Thi…
Modulation of the electronic properties of GaN films by surface acoustic waves
2003
We report on the interaction between photogenerated electron-hole pairs and surface acoustic waves (SAW) in GaN films grown on sapphire substrates. The spatial separation of photogenerated carriers by the piezoelectric field of the SAW is evidenced by the quenching of the photoluminescence (PL) intensity. The quenching levels in GaN are significantly smaller than those measured in GaAs under similar conditions. The latter is attributed to the lower exciton ionization efficiency and carrier separation probabilities mediated by the piezoelectric effect. The PL spectra also evidence energy shifts and broadenings of the electronic transitions, which are attributed to the band gap modulation by …
Acoustically driven photon antibunching in nanowires.
2011
The oscillating piezoelectric field of a surface acoustic wave (SAW) is employed to transport photoexcited carriers, as well as to spatially control exciton recombination in GaAs-based nanowires (NWs) on a subns time scale. The experiments are carried out in core-shell NWs transferred to a SAW delay line on a LiNbO(3) crystal. Carriers generated in the NW by a focused laser spot are acoustically transferred to a second location, leading to the remote emission of subns light pulses synchronized with the SAW phase. The dynamics of the carrier transport, investigated using spatially and time-resolved photoluminescence, is well-reproduced by computer simulations. The high-frequency contactless …
Roadmap on STIRAP applications
2019
STIRAP (stimulated Raman adiabatic passage) is a powerful laser-based method, usually involving two photons, for efficient and selective transfer of populations between quantum states. A particularly interesting feature is the fact that the coupling between the initial and the final quantum states is via an intermediate state, even though the lifetime of the latter can be much shorter than the interaction time with the laser radiation. Nevertheless, spontaneous emission from the intermediate state is prevented by quantum interference. Maintaining the coherence between the initial and final state throughout the transfer process is crucial. STIRAP was initially developed with applications in …
Quantitative subsurface defect detection in composite materials using a non-contact ultrasonic system
2002
The results of an experimental study conducted to detect subsurface defects in a thick Gr/PPS composite test sample using a noncontact ultrasonic system are presented. Surface waves are generated by a pulsed laser and detected by an air-coupled capacitance transducer. By controlling the surface wave wavelength through a shadow mask, it is possible to control surface wave penetration depth in the sample. Surface wave peak-to-peak amplitude is related to the near-surface material condition. Results indicate that signal amplitude decreases as the width of the defect increases and an approximately linear relation can be deduced.
Tunable coupled surface acoustic cavities
2012
We demonstrate the electric tuning of the acoustic field in acoustic microcavities (MCs) defined by a periodic arrangement of metal stripes within a surface acoustic delay line on LiNbO3 substrate. Interferometric measurements show the enhancement of the acoustic field distribution within a single MC, the presence of a “bonding” and “anti-bonding” modes for two strongly coupled MCs, as well as the positive dispersion of the “mini-bands” formed by five coupled MCs. The frequency and amplitude of the resonances can be controlled by the potential applied to the metal stripes.
Acoustic transmitters for underwater neutrino telescopes.
2012
In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing recei…
Sound absorption prediction of linear damped acoustic resonators using a lightweight hybrid model
2019
International audience; A lightweight numerical method is developed to predict the sound absorption coefficient of resonators whose cross-section dimensions are significantly larger compared to the viscous and thermal boundary layer’s thicknesses. This method is based on the boundary layer theory and on the perturbations theory. According to the perturbations theory, in acoustical domains with large dimensions, the fluid viscosity and thermal conductivity only affect the boundary layers. The model proposed in this article combines the lossless Helmholtz wave equation derived from a perfect fluid hypothesis, with viscosity and thermal conductivity values of a real fluid to compute the sound …
Magnetic skyrmions: from fundamental to applications
2016
In this topical review, we will discuss recent advances in the field of skyrmionics (fundamental and applied aspects) mainly focusing on skyrmions that can be realized in thin film structures where an ultrathin ferromagnetic layer (<1 nm) is coupled to materials with large spin-orbit coupling. We review the basic topological nature of the skyrmion spin structure that can entail a stabilization due to the chiral exchange interaction present in many multilayer systems with structural inversion asymmetry. The static spin structures and the dynamics of the skyrmions are also discussed. In particular, we show that skyrmions can be displaced with high reliability and efficiency as needed for t…