Search results for " action"
showing 10 items of 3633 documents
A roadmap for amphibious drilling at the Campi Flegrei caldera: insights from a MagellanPlus workshop
2019
Large calderas are among the Earth's major volcanic features. They are associated with large magma reservoirs and elevated geothermal gradients. Caldera-forming eruptions result from the withdrawal and collapse of the magma chambers and produce large-volume pyroclastic deposits and later-stage deformation related to post-caldera resurgence and volcanism. Unrest episodes are not always followed by an eruption; however, every eruption is preceded by unrest. The Campi Flegrei caldera (CFc), located along the eastern Tyrrhenian coastline in southern Italy, is close to the densely populated area of Naples. It is one of the most dangerous volcanoes on Earth and represents a key example of an acti…
LAI, FAPAR and FCOVER ground-truth map creation from FASat-C satellite imagery and in-situ measurements in Chimbarongo, Chile, for satellite products…
2016
[EN] In remote sensing, validation exercises are essential to ensure the quality of the products originated from satellite Earth observations. To assess the measurement uncertainty derived from satellite products, several ground field data from different ecosystems must be available for use. In the same order of importance, it is necessary to define data sampling and up-scaling methodologies to allow a suitable comparison between the ground data and the pixel size of the product. This paper shows the applied methodology used in the FP7 ImagineS project (Implementing Multi-scale Agricultural Indicators Exploiting Sentinels) to validate 10-days global LAI, FAPAR and vegetation cover products …
Estimating the macroscopic capillary length from Beerkan infiltration experiments and its impact on saturated soil hydraulic conductivity predictions
2020
International audience; The macroscopic capillary length, λc, is a fundamental soil parameter expressing the relative importance of the capillary over gravity forces during water movement in unsaturated soil. In this investigation, we propose a simple field method for estimating λc using only a single-ring infiltration experiment of the Beerkan type and measurements of initial and saturated soil water contents. We assumed that the intercept of the linear regression fitted to the steady-state portion of the experimental infiltration curve could be used as a reliable predictor of λc. This hypothesis was validated by assessing the proposed calculation approach using both analytical and field d…
Potential impacts of a future Nordic bioeconomy on surface water quality
2020
AbstractNordic water bodies face multiple stressors due to human activities, generating diffuse loading and climate change. The ‘green shift’ towards a bio-based economy poses new demands and increased pressure on the environment. Bioeconomy-related pressures consist primarily of more intensive land management to maximise production of biomass. These activities can add considerable nutrient and sediment loads to receiving waters, posing a threat to ecosystem services and good ecological status of surface waters. The potential threats of climate change and the ‘green shift’ highlight the need for improved understanding of catchment-scale water and element fluxes. Here, we assess possible bio…
Spectral biases in tree-ring climate proxies
2013
Seamless quantification of past and present climate variability is needed to understand the Earth’s climate well enough to make accurate predictions for the future. This study addresses whether tree-ring-dominated proxy data properly represent the frequency spectrum of true climate variability. The results challenge the validity of detection and attribution investigations based on these data. External forcing and internal dynamics result in climate system variability ranging from sub-daily weather to multi-centennial trends and beyond1,2. State-of-the-art palaeoclimatic methods routinely use hydroclimatic proxies to reconstruct temperature (for example, refs 3, 4), possibly blurring differe…
Vegetation vulnerability to drought in Spain
2014
[EN] Frequency of climatic extremes like long duration droughts has increased in Spain over the last century.The use of remote sensing observations for monitoring and detecting drought is justified on the basis that vegetation vigor is closely related to moisture condition. We derive satellite estimates of bio-physical variables such as fractional vegetation cover (FVC) from MODIS/EOS and SEVIRI/MSG time series. The study evaluates the strength of temporal relationships between precipitation and vegetation condition at time-lag and cumulative rainfall intervals. From this analysis, it was observed that the climatic disturbances affected both the growing season and the total amount of vegeta…
Turbulent jet through porous obstructions under Coriolis effect: an experimental investigation
2021
AbstractThe present study has the main purpose to experimentally investigate a turbulent momentum jet issued in a basin affected by rotation and in presence of porous obstructions. The experiments were carried out at the Coriolis Platform at LEGI Grenoble (FR). A large and unique set of velocity data was obtained by means of a Particle Image Velocimetry measurement technique while varying the rotation rate of the tank and the density of the canopy. The main differences in jet behavior in various flow configurations were assessed in terms of mean flow, turbulent kinetic energy and jet spreading. The jet trajectory was also detected. The results prove that obstructions with increasing density…
Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud
2020
Remote sensing optical sensors onboard operational satellites cannot have high spectral, spatial and temporal resolutions simultaneously. In addition, clouds and aerosols can adversely affect the signal contaminating the land surface observations. We present a HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HISTARFM) algorithm to combine multispectral images of different sensors to reduce noise and produce monthly gap free high resolution (30 m) observations over land. Our approach uses images from the Landsat (30 m spatial resolution and 16 day revisit cycle) and the MODIS missions, both from Terra and Aqua platforms (500 m spatial resolution and daily revisit cycle). We implem…
Statistical retrieval of atmospheric profiles with deep convolutional neural networks
2019
Abstract Infrared atmospheric sounders, such as IASI, provide an unprecedented source of information for atmosphere monitoring and weather forecasting. Sensors provide rich spectral information that allows retrieval of temperature and moisture profiles. From a statistical point of view, the challenge is immense: on the one hand, “underdetermination” is common place as regression needs to work on high dimensional input and output spaces; on the other hand, redundancy is present in all dimensions (spatial, spectral and temporal). On top of this, several noise sources are encountered in the data. In this paper, we present for the first time the use of convolutional neural networks for the retr…
Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture
2013
Imaging using lightweight, unmanned airborne vehicles (UAVs) is one of the most rapidly developing fields in remote sensing technology. The new, tunable, Fabry-Perot interferometer-based (FPI) spectral camera, which weighs less than 700 g, makes it possible to collect spectrometric image blocks with stereoscopic overlaps using light-weight UAV platforms. This new technology is highly relevant, because it opens up new possibilities for measuring and monitoring the environment, which is becoming increasingly important for many environmental challenges. Our objectives were to investigate the processing and use of this new type of image data in precision agriculture. We developed the entire pro…