Search results for " and Control"
showing 10 items of 385 documents
Optimal control of an ensemble of Bloch equations with applications in MRI
2016
International audience; The optimal control of an ensemble of Bloch equations describing the evolution of an ensemble of spins is the mathematical model used in Nuclear Resonance Imaging and the associated costs lead to consider Mayer optimal control problems. The Maximum Principle allows to parameterize the optimal control and the dynamics is analyzed in the framework of geometric optimal control. This lead to numerical implementations or suboptimal controls using averaging principle.
Regularization of chattering phenomena via bounded variation controls
2018
In control theory, the term chattering is used to refer to strong oscillations of controls, such as an infinite number of switchings over a compact interval of times. In this paper we focus on three typical occurences of chattering: the Fuller phenomenon, referring to situations where an optimal control switches an infinite number of times over a compact set; the Robbins phenomenon, concerning optimal control problems with state constraints, meaning that the optimal trajectory touches the boundary of the constraint set an infinite number of times over a compact time interval; the Zeno phenomenon, referring as well to an infinite number of switchings over a compact set, for hybrid optimal co…
Conjugate and cut loci of a two-sphere of revolution with application to optimal control
2008
Abstract The objective of this article is to present a sharp result to determine when the cut locus for a class of metrics on a two-sphere of revolution is reduced to a single branch. This work is motivated by optimal control problems in space and quantum dynamics and gives global optimal results in orbital transfer and for Lindblad equations in quantum control.
Convergence rate of a relaxed inertial proximal algorithm for convex minimization
2018
International audience; In a Hilbert space setting, the authors recently introduced a general class of relaxed inertial proximal algorithms that aim to solve monotone inclusions. In this paper, we specialize this study in the case of non-smooth convex minimization problems. We obtain convergence rates for values which have similarities with the results based on the Nesterov accelerated gradient method. The joint adjustment of inertia, relaxation and proximal terms plays a central role. In doing so, we highlight inertial proximal algorithms that converge for general monotone inclusions, and which, in the case of convex minimization, give fast convergence rates of values in the worst case.
Geometric and numerical techniques to compute conjugate and cut loci on Riemannian surfaces
2014
International audience; We combine geometric and numerical techniques - the Hampath code - to compute conjugate and cut loci on Riemannian surfaces using three test bed examples: ellipsoids of revolution, general ellipsoids, and metrics with singularities on S2 associated to spin dynamics.
Time Versus Energy in the Averaged Optimal Coplanar Kepler Transfer towards Circular Orbits
2015
International audience; The aim of this note is to compare the averaged optimal coplanar transfer towards circular orbits when the costs are the transfer time transfer and the energy consumption. While the energy case leads to analyze a 2D Riemannian metric using the standard tools of Riemannian geometry (curvature computations, geodesic convexity), the time minimal case is associated to a Finsler metric which is not smooth. Nevertheless a qualitative analysis of the geodesic flow is given in this article to describe the optimal transfers. In particular we prove geodesic convexity of the elliptic domain.
Computation of conjugate times in smooth optimal control: the COTCOT algorithm
2006
Conjugate point type second order optimality conditions for extremals associated to smooth Hamiltonians are evaluated by means of a new algorithm. Two kinds of standard control problems fit in this setting: the so-called regular ones, and the minimum time singular single-input affine systems. Conjugate point theory is recalled in these two cases, and two applications are presented: the minimum time control of the Kepler and Euler equations.
Monotone Concave Operators: An application to the existence and uniqueness of solutions to the Bellman equation
2008
We propose a new approach to the issue of existence and uniqueness of solutions to the Bellman equation, exploiting an emerging class of methods, called monotone map methods, pioneered in the work of Krasnosel’skii (1964) and Krasnosel’skii-Zabreiko (1984). The approach is technically simple and intuitive. It is derived from geometric ideas related to the study of fixed points for monotone concave operators defined on partially order spaces.
On the optimal control of the circular restricted three body problem
2011
The context of this work is space mechanics. More precisely, we aim at computing low thrust transfers in the Earth-Moon system modeled by the circular restricted three-body problem. The goal is to calculate the optimal steering of the spacecraft engine with respect to two optimization criteria: Final time and fuel consumption. The contributions of this thesis are of two kinds. Geometric, first, as we study the controllability of the system together with the geometry of the transfers (structure of the command) by means of geometric control tools. Numerical, then, different homotopic methods being developed. A two-three body continuation is used to compute minimum time trajectories, and then …
Variational methods in imaging and geometric control
2016
International audience