6533b86efe1ef96bd12cbec7
RESEARCH PRODUCT
Regularization of chattering phenomena via bounded variation controls
Emmanuel TrélatMarco CaponigroRoberta GhezziBenedetto Piccolisubject
[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyState constraintsBoundary (topology)02 engineering and technologyInterval (mathematics)01 natural sciences020901 industrial engineering & automationShooting methodConvergence (routing)FOS: MathematicsApplied mathematicsHybrid problems0101 mathematicsElectrical and Electronic EngineeringMathematics - Optimization and ControlMathematicsTotal variation010102 general mathematics[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]Optimal controlComputer Science ApplicationsControllabilityControl and Systems EngineeringOptimization and Control (math.OC)Chattering controlBounded variationTrajectory[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]Fuller phenomenondescription
In control theory, the term chattering is used to refer to strong oscillations of controls, such as an infinite number of switchings over a compact interval of times. In this paper we focus on three typical occurences of chattering: the Fuller phenomenon, referring to situations where an optimal control switches an infinite number of times over a compact set; the Robbins phenomenon, concerning optimal control problems with state constraints, meaning that the optimal trajectory touches the boundary of the constraint set an infinite number of times over a compact time interval; the Zeno phenomenon, referring as well to an infinite number of switchings over a compact set, for hybrid optimal control problems. From the practical point of view, when trying to compute an optimal trajectory, for instance by means of a shooting method, chattering may be a serious obstacle to convergence. In this paper we propose a general regularization procedure, by adding an appropriate penalization of the total variation. This produces a quasi-optimal control, and we prove that the family of quasi-optimal solutions converges to the optimal solution of the initial problem as the penalization tends to zero. Under additional assumptions, we also quantify the quasi-optimality property by determining a speed of convergence of the costs.
year | journal | country | edition | language |
---|---|---|---|---|
2018-07-01 |