Search results for " artificial intelligence"

showing 10 items of 1992 documents

MFNet: Multi-feature convolutional neural network for high-density crowd counting

2020

The crowd counting task involves the issue of security, so now more and more people are concerned about it. At present, the most difficult problem of population counting consists in: how to make the model distinguish human head features more finely in the densely populated area, such as head overlap and how to find a small-scale local head feature in an image with a wide range of population density. Facing these challenges, we propose a network for multiple feature convolutional neural network, which is called MFNet. It aims to get high-quality density maps in the high-density crowd scene, and at the same time to perform the task of the count and estimation of the crowd. In terms of crowd c…

0209 industrial biotechnologyeducation.field_of_studyHuman headComputer sciencebusiness.industryPopulationPattern recognition02 engineering and technologyConvolutional neural networkImage (mathematics)Support vector machineTask (computing)Range (mathematics)020901 industrial engineering & automationFeature (computer vision)0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligenceeducationbusiness2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)
researchProduct

New delay-dependent stability of Markovian jump neutral stochastic systems with general unknown transition rates

2015

This paper investigates the delay-dependent stability problem for neutral Markovian jump systems with generally unknown transition rates GUTRs. In this neutral GUTR model, each transition rate is completely unknown or only its estimate value is known. Based on the study of expectations of the stochastic cross-terms containing the integral, a new stability criterion is derived in terms of linear matrix inequalities. In the mathematical derivation process, bounding stochastic cross-terms, model transformation and free-weighting matrix are not employed for less conservatism. Finally, an example is provided to demonstrate the effectiveness of the proposed results.

0209 industrial biotechnologygeneral uncertain transition rateStability criterionModel transformationDelay-dependent stability02 engineering and technologyTransition rate matrixStability (probability)neutral-type stochastic systemTheoretical Computer ScienceDelay dependentMatrix (mathematics)Markovian jump020901 industrial engineering & automationControl theoryBounding overwatch0202 electrical engineering electronic engineering information engineeringApplied mathematicsMathematicscomputer.programming_languageDelay-dependent stability; neutral-type stochastic system;Markovian switching; general uncertain transition rate; mean-square exponentially stable; Control and Systems Engineering; Theoretical Computer Science; Computer Science Applications1707 Computer Vision and Pattern RecognitionMarkovian switchingComputer Science Applications1707 Computer Vision and Pattern RecognitionComputer Science ApplicationsControl and Systems Engineeringmean-square exponentially stable020201 artificial intelligence & image processingcomputerInternational Journal of Systems Science
researchProduct

Input Selection Methods for Soft Sensor Design: A Survey

2020

Soft Sensors (SSs) are inferential models used in many industrial fields. They allow for real-time estimation of hard-to-measure variables as a function of available data obtained from online sensors. SSs are generally built using industries historical databases through data-driven approaches. A critical issue in SS design concerns the selection of input variables, among those available in a candidate dataset. In the case of industrial processes, candidate inputs can reach great numbers, making the design computationally demanding and leading to poorly performing models. An input selection procedure is then necessary. Most used input selection approaches for SS design are addressed in this …

0209 industrial biotechnologylcsh:T58.5-58.64lcsh:Information technologyComputer Networks and CommunicationsComputer scienceFeature selectionprediction02 engineering and technologyFunction (mathematics)input selectionSoft sensorcomputer.software_genresoft sensor; inferential model; input selection; feature selection; regression; predictionfeature selection020901 industrial engineering & automationinferential model0202 electrical engineering electronic engineering information engineeringsoft sensorregression020201 artificial intelligence & image processingData miningInput selectioncomputerSelection (genetic algorithm)Future Internet
researchProduct

DESDEO: The Modular and Open Source Framework for Interactive Multiobjective Optimization

2021

Interactive multiobjective optimization methods incorporate preferences from a human decision maker in the optimization process iteratively. This allows the decision maker to focus on a subset of solutions, learn about the underlying trade-offs among the conflicting objective functions in the problem and adjust preferences during the solution process. Incorporating preference information allows computing only solutions that are interesting to the decision maker, decreasing computation time significantly. Thus, interactive methods have many strengths making them viable for various applications. However, there is a lack of existing software frameworks to apply and experiment with interactive …

0209 industrial biotechnologylineaarinen optimointiPareto optimizationGeneral Computer Sciencemulti-criteria decision makingComputer sciencepäätöksentekoevoluutiolaskenta02 engineering and technologyData-driven multiobjective optimizationcomputer.software_genrenonlinear optimizationMulti-objective optimizationData modelingopen source softwareavoin lähdekoodi020901 industrial engineering & automationSoftwareoptimointi0202 electrical engineering electronic engineering information engineeringGeneral Materials ScienceUse casecomputer.programming_languageGraphical user interfacepareto-tehokkuusbusiness.industryGeneral Engineeringinteractive methodsModular designPython (programming language)monitavoiteoptimointiTK1-9971Software frameworkdata-driven multiobjective optimizationevolutionary computation020201 artificial intelligence & image processingElectrical engineering. Electronics. Nuclear engineeringbusinessSoftware engineeringcomputerIEEE Access
researchProduct

P-FCM: a proximity-based fuzzy clustering for user-centered web applications

2003

Abstract In last years, the Internet and the web have been evolved in an astonishing way. Standard web search services play an important role as useful tools for the Internet community even though they suffer from a certain difficulty. The web continues its growth, making the reliability of Internet-based information and retrieval systems more complex. Nevertheless there has been a substantial analysis of the gap between the expected information and the returned information, the work of web search engine is still very hard. There are different problems concerning web searching activity, one among these falls in the query phase. Each engine provide an interface which the user is forced to le…

0209 industrial biotechnologymedicine.medical_specialtyComputer science02 engineering and technologyWeb engineeringcomputer.software_genreSimilarityTheoretical Computer ScienceWorld Wide Web020901 industrial engineering & automationArtificial IntelligenceWeb query classificationWeb design0202 electrical engineering electronic engineering information engineeringmedicineWeb navigationWeb search queryInformation retrievalHuman–computer interactionApplied MathematicsFuzzy logicSearch enginesWeb search engine020201 artificial intelligence & image processingWeb servicecomputerWeb modelingSoftwareFuzzy C-mean algorithmInternational Journal of Approximate Reasoning
researchProduct

Do Randomized Algorithms Improve the Efficiency of Minimal Learning Machine?

2020

Minimal Learning Machine (MLM) is a recently popularized supervised learning method, which is composed of distance-regression and multilateration steps. The computational complexity of MLM is dominated by the solution of an ordinary least-squares problem. Several different solvers can be applied to the resulting linear problem. In this paper, a thorough comparison of possible and recently proposed, especially randomized, algorithms is carried out for this problem with a representative set of regression datasets. In addition, we compare MLM with shallow and deep feedforward neural network models and study the effects of the number of observations and the number of features with a special dat…

0209 industrial biotechnologyrandom projectionlcsh:Computer engineering. Computer hardwareComputational complexity theoryComputer scienceRandom projectionlcsh:TK7885-789502 engineering and technologyMachine learningcomputer.software_genresupervised learningapproximate algorithmsSet (abstract data type)regressioanalyysi020901 industrial engineering & automationdistance–based regressionalgoritmit0202 electrical engineering electronic engineering information engineeringordinary least–squaresbusiness.industrySupervised learningsingular value decompositionminimal learning machineMultilaterationprojektioRandomized algorithmkoneoppiminenmachine learningScalabilityFeedforward neural network020201 artificial intelligence & image processingArtificial intelligenceapproksimointibusinesscomputerMachine Learning and Knowledge Extraction
researchProduct

Dissipativity-Based Small-Gain Theorems for Stochastic Network Systems

2016

In this paper, some small-gain theorems are proposed for stochastic network systems which describe large-scale systems with interconnections, uncertainties and random disturbances. By the aid of conditional dissipativity and showing times of stochastic interval, small-gain conditions proposed for the deterministic case are extended to the stochastic case. When some design parameters are tunable in practice, we invaginate a simpler method to verify small-gain condition by selecting one subsystem as a monitor. Compared with the existing results, the existence-and-uniqueness of solution and ultimate uniform boundedness of input are removed from requirements of input-to-state stability and smal…

0209 industrial biotechnologystochastic systemsComputer Science Applications1707 Computer Vision and Pattern Recognition02 engineering and technologyInterval (mathematics)Stability (probability)Electronic mailComputer Science Applicationsinput-to-state stabilityDissipativity; input-to-state stability; network systems; stochastic systems; Control and Systems Engineering; Computer Science Applications1707 Computer Vision and Pattern Recognition; Electrical and Electronic EngineeringNonlinear system020901 industrial engineering & automationnetwork systemsControl and Systems EngineeringControl theoryControl system0202 electrical engineering electronic engineering information engineeringUniform boundedness020201 artificial intelligence & image processingStochastic optimizationElectrical and Electronic EngineeringDissipativityMathematicsIEEE Transactions on Automatic Control
researchProduct

Hard material small-batch industrial machining robot

2018

Abstract Hard materials can be cost effectively machined with standard industrial robots by enhancing current state-of-the-art technologies. It is demonstrated that even hard metals with specific robotics-optimised novel hard-metal tools can be machined by standard industrial robots with an improved position-control approach and enhanced compliance-control functions. It also shows that the novel strategies to compensate for elastic robot errors, based on models and advanced control, as well as the utilisation of new affordable sensors and human-machine interfaces, can considerably improve the robot performance and applicability of robots in machining tasks. In conjunction with the developme…

0209 industrial biotechnologyta213RobotComputer scienceGeneral MathematicsSmall-batch02 engineering and technologyMachiningIndustrial and Manufacturing EngineeringManufacturing engineeringComputer Science ApplicationsHard metalsCompliance control020901 industrial engineering & automationMachiningControl and Systems Engineering0202 electrical engineering electronic engineering information engineeringRobot020201 artificial intelligence & image processingIndustrialMotion planningPath planningSoftwareHMIRobotics and Computer-Integrated Manufacturing
researchProduct

An Artificial Bee Colony Approach for Classification of Remote Sensing Imagery

2018

This paper presents a novel Artificial Bee Colony (ABC) approach for supervised classification of remote sensing images. One proposes to apply an ABC algorithm to optimize the coefficients of the set of polynomial discriminant functions. We have experimented the proposed ABC-based classifier algorithm for a Landsat 7 ETM+ image database, evaluating the influence of the ABC model parameters on the classifier performances. Such ABC model parameters are: numbers of employed/onlooker/scout bees, number of epochs, and polynomial degree. One has compared the best ABC classifier Overall Accuracy (OA) with the performances obtained using a set of benchmark classifiers (NN, NP, RBF, and SVM). The re…

021103 operations researchArtificial neural networkComputer science0211 other engineering and technologies02 engineering and technologyArtificial bee colony algorithmSupport vector machineStatistical classificationAbc modelComputingMethodologies_PATTERNRECOGNITIONDiscriminant0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingDegree of a polynomialClassifier (UML)Remote sensing2018 10th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)
researchProduct

PolyACO+: a multi-level polygon-based ant colony optimisation classifier

2017

Ant Colony Optimisation for classification has mostly been limited to rule based approaches where artificial ants walk on datasets in order to extract rules from the trends in the data, and hybrid approaches which attempt to boost the performance of existing classifiers through guided feature reductions or parameter optimisations. A recent notable example that is distinct from the mainstream approaches is PolyACO, which is a proof of concept polygon-based classifier that resorts to ant colony optimisation as a technique to create multi-edged polygons as class separators. Despite possessing some promise, PolyACO has some significant limitations, most notably, the fact of supporting classific…

021103 operations researchArtificial neural networkComputer sciencebusiness.industryPolygonsTraining timeMulti-levelling0211 other engineering and technologiesPattern recognition02 engineering and technologyAnt colonySupport vector machineArtificial IntelligenceMultiple time dimensionsPolygonAnt colony optimisation0202 electrical engineering electronic engineering information engineeringArtificial Ants020201 artificial intelligence & image processingArtificial intelligenceClassificationsbusinessClassifier (UML)
researchProduct