Search results for " astroparticle physics"

showing 10 items of 38 documents

Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory

2013

The Pierre Auger Observatory in Malargue, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, lo…

AstronomyDetector alignment and calibration methods (lasers sources particle-beams)01 natural sciencesDetector alignment and calibration methods (laserObservatoryATMOSPHERIC CONDITIONSDetector alignment and calibration methodsInstrumentationcosmic rayMathematical PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsatmospheric monitoring[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsData analysiparticle-beams)ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGCentral Laser FacilityFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomenasources[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]sourceAuger Experimentaerosols * Authors are listed on the following pagesData analysisFOS: Physical sciencesCosmic rayAuger Experiment; cosmic rays; atmospheric monitoring; aerosolsOpticscosmic raysUltra-high energy cosmic rays. atmospheric monitoring. aerosols0103 physical sciences010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Pierre Auger Observatory010308 nuclear & particles physicsbusiness.industryLarge detector systems for particle and astroparticle physicsAttenuationAtmospheric correctionUltra-high energy cosmic rays[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AerosolDetector alignment and calibration methods (lasersAir showerdetector alignment and calibration methods (lasers; sources; particle-beams); large detector systems for particle and astroparticle physics; data analysisExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicbusinessRAIOS CÓSMICOSaerosolsSYSTEM
researchProduct

International Scoping Study (ISS) for a future neutrino factory and Super-Beam facility. Detectors and flux instrumentation for future neutrino facil…

2009

Technical report by The ISS Detector Working Group; This report summarises the conclusions from the detector group of the International Scoping Study of a future Neutrino Factory and Super-Beam neutrino facility. The baseline detector options for each possible neutrino beam are defined as follows: 1. A very massive (Megaton) water Cherenkov detector is the baseline option for a sub-GeV Beta Beam and Super Beam facility. 2. There are a number of possibilities for either a Beta Beam or Super Beam (SB) medium energy facility between 1-5 GeV. These include a totally active scintillating detector (TASD), a liquid argon TPC or a water Cherenkov detector. 3. A 100 kton magnetized iron neutrino det…

Particle physicsneutrino factoryCherenkov detectorPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaBeam-line instrumentation (beam position and profile monitorsddc:500.27. Clean energy01 natural sciencesBunch length monitors)law.inventionNuclear physicsneutrinolaw0103 physical sciencesbeam-intensity monitorsneutrino oscillation[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental Techniques010306 general physicsInstrumentationbeam-intensity monitorMathematical PhysicsdetectorsPhysicsMuon010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsDetectorFísicaBeam-intensity monitorsFIS/01 - FISICA SPERIMENTALENeutrino detectorLarge detector systems for particle and astroparticle physicBeam-line instrumentation (beam position and profile monitorbunch length monitors)Physics::Accelerator PhysicsNeutrino FactoryHigh Energy Physics::ExperimentCloud chamberNeutrinoBeam (structure)
researchProduct

Search for inelastic scattering of WIMP dark matter in XENON1T

2021

We report the results of a search for the inelastic scattering of weakly interacting massive particles (WIMPs) in the XENON1T dark matter experiment. Scattering off $^{129}$Xe is the most sensitive probe of inelastic WIMP interactions, with a signature of a 39.6 keV de-excitation photon detected simultaneously with the nuclear recoil. Using an exposure of 0.89 tonne-years, we find no evidence of inelastic WIMP scattering with a significance of more than 2$\sigma$. A profile-likelihood ratio analysis is used to set upper limits on the cross-section of WIMP-nucleus interactions. We exclude new parameter space for WIMPs heavier than 100 GeV/c${}^2$, with the strongest upper limit of $3.3 \time…

xenon: targetPhotonPhysics::Instrumentation and DetectorsParameter space01 natural sciencesWIMP: dark matterHigh Energy Physics - Experiment; High Energy Physics - Experiment; astro-ph.COHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)XENONRecoilWIMPWIMP nucleus: cross section[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Dark Matterparameter spaceNuclear ExperimentComputingMilieux_MISCELLANEOUSnucleus: recoilPhysicsDark Matter Inelastic scattering XENON Direct Dark MatterPhysicsphotonAstrophysics::Instrumentation and Methods for AstrophysicsDirect Dark MatterWeakly interacting massive particlesastro-ph.COsignatureAstrophysics - Cosmology and Nongalactic AstrophysicsParticle physicsInelastic scatteringCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterFOS: Physical sciencesWIMP: massAstrophysics::Cosmology and Extragalactic AstrophysicsInelastic scatteringNOPE2_2PE2_10103 physical sciencesddc:530010306 general physics010308 nuclear & particles physicsScatteringWIMP nucleus: interactionDarkmatterWIMP: interactionHigh Energy Physics::Experiment[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics and astroparticle physicsexperimental resultsPhysical Review D. Particles, Fields, Gravitation, and Cosmology
researchProduct

The FRAM robotic telescope for atmospheric monitoring at the Pierre Auger Observatory

2021

FRAM (F/Photometric Robotic Atmospheric Monitor) is a robotic telescope operated at the Pierre Auger Observatory in Argentina for the purposes of atmospheric monitoring using stellar photometry. As a passive system which does not produce any light that could interfere with the observations of the fluorescence telescopes of the observatory, it complements the active monitoring systems that use lasers. We discuss the applications of stellar photometry for atmospheric monitoring at optical observatories in general and the particular modes of operation employed by the Auger FRAM. We describe in detail the technical aspects of FRAM, the hardware and software requirements for a successful operati…

AstronomyLarge detector systems for particle and astroparticle physics; Optics; Photon detectors for UV visible and IR photons (solid-state) (PIN diodes APDs Si-PMTs G-APDs CCDs EBCCDs EMCCDs CMOS imagers etc); Real-time monitoringReal-time monitoring01 natural sciencesAugerSuccessful operationObservatoryopticalAPDshardwareAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsInstrumentationPhoton detectors for UVMathematical PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEEBCCDsSettore FIS/01 - Fisica SperimentalePhoton detectors for UV visible and IR photons (solid-state) (PIN diodes APDs Si-PMTs G-APDs CCDs EBCCDs EMCCDs CMOS imagers etc)Astrophysics::Instrumentation and Methods for AstrophysicsSi-PMTsAugerobservatoryRobotic telescopeG-APDsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaSciences exactes et naturellesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesprogrammingdetector: fluorescencePhotometry (optics)0103 physical sciencesddc:610[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]High Energy Physicsvisible and IR photons (solid-state) (PIN diodesCMOS imagersInstrumentation and Methods for Astrophysics (astro-ph.IM)Astrophysics::Galaxy AstrophysicsRemote sensingetc)fluorescence [detector]Pierre Auger Observatory010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsActive monitoringOpticsCCDslasermonitoringEMCCDsLarge detector systems for particle and astroparticle physicatmosphereExperimental High Energy PhysicsOpticEnvironmental science[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]RAIOS CÓSMICOSastro-ph.IM
researchProduct

Combined performance studies for electrons at the 2004 ATLAS combined test-beam

2010

In 2004 at the ATLAS (A Toroidal LHC ApparatuS) combined test beam, one slice of the ATLAS barrel detector (including an Inner Detector set-up and the Liquid Argon calorimeter) was exposed to particles from the H8 SPS beam line at CERN. It was the first occasion to test the combined electron performance of ATLAS. This paper presents results obtained for the momentum measurement p with the Inner Detector and for the performance of the electron measurement with the LAr calorimeter (energy E linearity and resolution) in the presence of a magnetic field in the Inner Detector for momenta ranging from 20 GeV/c to 100 GeV/c. Furthermore the particle identification capabilities of the Transition Ra…

Physics::Instrumentation and DetectorsCiências Naturais::Ciências Físicas:Ciências Físicas [Ciências Naturais]Transition radiation detectorsElectronsddc:500.201 natural sciencesParticle identificationNuclear physicsCalorimetersAtlas (anatomy)Particle tracking detectors0103 physical sciencesmedicine[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Detectors and Experimental Techniques010306 general physicsNuclear ExperimentInstrumentationDetectors de radiacióMathematical PhysicsPhysicsLarge Hadron ColliderScience & Technology010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsDetectorCalorimetermedicine.anatomical_structureTransition radiationBeamlineHigh Energy Physics::ExperimentBeam (structure)
researchProduct

Reconstruction of events recorded with the surface detector of the Pierre Auger Observatory

2020

Cosmic rays arriving at Earth collide with the upper parts of the atmosphere, thereby inducing extensive air showers. When secondary particles from the cascade arrive at the ground, they are measured by surface detector arrays. We describe the methods applied to the measurements of the surface detector of the Pierre Auger Observatory to reconstruct events with zenith angles less than 60 using the timing and signal information recorded using the water-Cherenkov detector stations. In addition, we assess the accuracy of these methods in reconstructing the arrival directions of the primary cosmic ray particles and the sizes of the induced showers.

Physics::Instrumentation and DetectorsAstronomyprimary [cosmic radiation]01 natural sciences030218 nuclear medicine & medical imagingAugerHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)0302 clinical medicinesurface [detector]Observatory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Data Processing; Large detector systems for particle and astroparticle physics; Large detector-systems performance; Performance of High Energy Physics DetectorsInstrumentationMathematical PhysicsData Processing; Large detector systems for particle and astroparticle physics; Largedetector-systems performance; Performance of High Energy Physics DetectorsLarge detector-systems performanceHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HEInstrumentation et méthodes en physiqueData ProcessingDetectorAstrophysics::Instrumentation and Methods for AstrophysicsAugercascadeobservatoryCascadeLargedetector-systems performanceddc:620Astrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomenaatmosphere [showers]airAstrophysics::High Energy Astrophysical PhenomenawaterFOS: Physical sciencesCosmic rayAtmosphere03 medical and health sciencesOptics0103 physical sciencesHigh Energy Physics14. Life underwater[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]ddc:610Instrumentation and Methods for Astrophysics (astro-ph.IM)ZenithEngineering & allied operationsPierre Auger Observatoryshowers: atmosphere010308 nuclear & particles physicsbusiness.industryhep-exdetector: surfaceLarge detector systems for particle and astroparticle physicsAutres mathématiquescosmic radiation: primaryCherenkov counterExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicHigh Energy Physics::ExperimentPerformance of High Energy Physics Detectorsbusiness[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]RAIOS CÓSMICOSastro-ph.IM
researchProduct

The ALICE experiment at the CERN LHC

2008

Journal of Instrumentation 3(08), S08002 (2008). doi:10.1088/1748-0221/3/08/S08002

visible and IR photonsLiquid detectorshigh energyPhotonPhysics::Instrumentation and DetectorsTransition radiation detectorsTiming detectors01 natural sciencesOverall mechanics designParticle identificationSoftware architecturesParticle identification methodsGaseous detectorscluster findingDetector cooling and thermo-stabilizationDetector groundingParticle tracking detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Special cablesDetector alignment and calibration methodsDetectors and Experimental TechniquesNuclear ExperimentVoltage distributions.Photon detectors for UVInstrumentationMathematical PhysicsQuantum chromodynamicsPhysicsLarge Hadron ColliderSpectrometersPhysicsDetectorcalibration and fitting methodsTransition radiation detectorScintillatorsData processing methodsAnalysis and statistical methodsData reduction methodsParticle physicsCherenkov and transition radiationTime projection chambers610dE/dx detectorsNuclear physicsCalorimetersPattern recognitionGamma detectors0103 physical sciencesddc:610Solid state detectors010306 general physicsMuonInstrumentation for heavy-ion acceleratorsSpectrometerLarge detector systems for particle and astroparticle physics010308 nuclear & particles physicsCERN; LHC; ALICE; heavy ion; QGPCherenkov detectorsComputingVoltage distributionsManufacturingscintillation and light emission processesanalysis and statistical methods; calorimeters; cherenkov and transition radiation; cherenkov detectors; computing; data processing methods; data reduction methods; de/dx detectors; detector alignment and calibration methods; detector cooling and thermo-stabilization; detector design and construction technologies and materials; detector grounding; gamma detectors; gaseous detectors; instrumentation for heavy-ion accelerators; instrumentation for particle accelerators and storage rings - high energy; large detector systems for particle and astroparticle physics; liquid detectors; manufacturing; overall mechanics design; particle identification methods; particle tracking detectors; pattern recognition; cluster finding; calibration and fitting methods; photon detectors for uv; visible and ir photons; scintillators; scintillation and light emission processes; simulation methods and programs; software architectures; solid state detectors; special cables; spectrometers; time projection chambers; timing detectors; transition radiation detectors; voltage distributionsInstrumentation for particle accelerators and storage ringsInstrumentation; Mathematical PhysicsHigh Energy Physics::ExperimentSimulation methods and programsDetector design and construction technologies and materials
researchProduct

Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Observatory.

2012

The Pierre Auger Observatory is exploring the potential of the radio detection technique to study extensive air showers induced by ultra-high energy cosmic rays. The Auger Engineering Radio Array (AERA) addresses both technological and scientific aspects of the radio technique. A first phase of AERA has been operating since September 2010 with detector stations observing radio signals at frequencies between 30 and 80 MHz. In this paper we present comparative studies to identify and optimize the antenna design for the final configuration of AERA consisting of 160 individual radio detector stations. The transient nature of the air shower signal requires a detailed description of the antenna s…

Ciencias Astronómicas[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AstronomyAstrophysics::High Energy Astrophysical Phenomenashowers: atmosphere | cosmic radiation: UHE | polarization: effect | Auger | radio wave: emission | radio wave: detector | galaxy | background | reflection | noise | detector: networkFOS: Physical sciencesCosmic ray01 natural sciencesSignalKASCADEMHZOpticsSIGNALS0103 physical sciencesTransient responseTime domain010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)InstrumentationMathematical Physics[PHYS]Physics [physics]PhysicsPierre Auger ObservatorySPECTRUMLarge detector systems for particle and astroparticle physics010308 nuclear & particles physicsbusiness.industryPhysicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsFísica[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]ATMOSFERA (MONITORAMENTO)Air showerAntennaExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGRADIATIONAntennasFísica nuclearAntenna (radio)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Instrumentation and Methods for Astrophysicsbusiness
researchProduct

Performance study of a 3×1×1 m3 dual phase liquid Argon Time Projection Chamber exposed to cosmic rays

2021

This work would not have been possible without the support of the Swiss National Science Foundation, Switzerland; CEA and CNRS/IN2P3, France; KEK and the JSPS program, Japan; Ministerio de Ciencia e Innovacion in Spain under grants FPA2016-77347-C2, SEV-2016-0588 and MdM-2015-0509, Comunidad de Madrid, the CERCA program of the Generalitat de Catalunya and the fellowship (LCF/BQ/DI18/11660043) from "La Caixa" Foundation (ID 100010434); the Programme PNCDI III, CERN-RO, under Contract 2/2020, Romania; the U.S. Department of Energy under Grant No. DE-SC0011686. This project has received funding from the European Union's Horizon 2020 Research and Innovation program under Grant Agreement no. 654…

Physics::Instrumentation and DetectorsLibrary scienceargon: gas01 natural sciences7. Clean energyNeutrino detectorArgon gasPolitical scienceParticle tracking detectors0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]media_common.cataloged_instanceNeutrino detectors[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]European union010306 general physicsInstrumentationMathematical Physicsmedia_common010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsTime projection Chambers (TPC)time projection chamber: liquid argonParticle tracking detectorTime projection chambercosmic radiationLarge detector systems for particle and astroparticle physicyield: stabilityLiquid argonperformance
researchProduct

The rapid atmospheric monitoring system of the Pierre Auger Observatory

2012

The Pierre Auger Observatory is a facility built to detect air showers produced by cosmic rays above 1017 eV. During clear nights with a low illuminated moon fraction, the UV fluorescence light produced by air showers is recorded by optical telescopes at the Observatory. To correct the observations for variations in atmospheric conditions, atmospheric monitoring is performed at regular intervals ranging from several minutes (for cloud identification) to several hours (for aerosol conditions) to several days (for vertical profiles of temperature, pressure, and humidity). In 2009, the monitoring program was upgraded to allow for additional targeted measurements of atmospheric conditions shor…

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]AstronomyFOS: Physical sciencesCosmic rayReal-time monitoring01 natural sciencesLarge detector systems for particle and astroparticle physics Real-time monitoring Control and monitor systems onlineOptical telescopeObservatory0103 physical sciencesSHOWERSLarge detector systems for particle and astroparticle physics; Real-time monitoring; Control and monitor systems onlineFLUORESCENCE010303 astronomy & astrophysicsInstrumentationInstrumentation and Methods for Astrophysics (astro-ph.IM)DETECTORMathematical PhysicsRemote sensingEvent reconstructionPierre Auger ObservatoryHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsControl and monitor systems online[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FísicaENERGY-SPECTRUMMonitoring programControl and monitor systems online; Large detector systems for particle and astroparticle physics; Real-time monitoringAerosolATMOSFERA (MONITORAMENTO)Air showerExperimental High Energy PhysicsFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct