Search results for " atomic physics"
showing 10 items of 344 documents
Physics at CERN's Antiproton Decelerator
2013
The Antiproton Decelerator of CERN began operation in 1999 to serve experiments for studies of CPT invariance by precision laser and microwave spectroscopy of antihydrogen ($\bar{\rm H}$) and antiprotonic helium ($\bar{p}{\rm He}^+$). The first 12 years of operation saw cold $\bar{\rm H}$ synthesized by overlapping clouds of positrons ($e^+$) and antiprotons ($\bar{p}$) confined in magnetic Penning traps. Cold $\bar{\rm H}$ was also produced in collisions between Rydberg positronium atoms and $\bar{p}$. Ground-state $\bar{\rm H}$ was later trapped for up to $\sim 1000$ s in a magnetic bottle trap, and microwave transitions excited between its hyperfine levels. In the $\bar{p}{\rm He}^+$ ato…
Observation of individual spin quantum transitions of a single antiproton
2017
We report on the detection of individual spin quantum transitions of a single trapped antiproton in a Penning trap. The spin-state determination, which is based on the unambiguous detection of axial frequency shifts in presence of a strong magnetic bottle, reaches a fidelity of 92.1% . Spin-state initialization with >99.9% fidelity and an average initialization time of 24 min are demonstrated. This is a major step towards an antiproton magnetic moment measurement with a relative uncertainty on the part-per-billion level. We report on the detection of individual spin quantum transitions of a single trapped antiproton in a Penning trap. The spin-state determination, which is based on the unam…
Searching for Earth/Solar axion halos
2020
We discuss the sensitivity of the present and near-future axion dark matter experiments to a halo of axions or axion-like particles gravitationally bound to the Earth or the Sun. The existence of such halos, assuming they are formed, renders a significant gain in the sensitivity of axion searches while satisfying all the present experimental bounds. The structure and coherence properties of these halos also imply novel signals, which can depend on the latitude or orientation of the detector. We demonstrate this by analysing the sensitivity of several distinct types of axion dark matter experiments.
The subtraction contribution to the muonic-hydrogen Lamb shift: a point for lattice QCD calculations of the polarizability effect
2020
The proton-polarizability contribution to the muonic-hydrogen Lamb shift is a major source of theoretical uncertainty in the extraction of the proton charge radius. An empirical evaluation of this effect, based on the proton structure functions, requires a systematically improvable calculation of the "subtraction function", possibly using lattice QCD. We consider a different subtraction point, with the aim of accessing the subtraction function directly in lattice calculations. A useful feature of this subtraction point is that the corresponding contribution of the structure functions to the Lamb shift is suppressed. The whole effect is dominated by the subtraction contribution, calculable o…
Weak quadrupole moments
2017
Collective effects in deformed atomic nuclei present possible avenues of study on the non-spherical distribution of neutrons and the violation of the local Lorentz invariance. We introduce the weak quadrupole moment of nuclei, related to the quadrupole distribution of the weak charge in the nucleus. The weak quadrupole moment produces tensor weak interaction between the nucleus and electrons and can be observed in atomic and molecular experiments measuring parity nonconservation. The dominating contribution to the weak quadrupole is given by the quadrupole moment of the neutron distribution, therefore, corresponding experiments should allow one to measure the neutron quadrupoles. Using the …
Implementing the three-particle quantization condition including higher partial waves
2019
We present an implementation of the relativistic three-particle quantization condition including both $s$- and $d$-wave two-particle channels. For this, we develop a systematic expansion about threshold of the three-particle divergence-free K matrix, $\mathcal{K}_{\mathrm{df,3}}$, which is a generalization of the effective range expansion of the two-particle K matrix, $\mathcal{K}_2$. Relativistic invariance plays an important role in this expansion. We find that $d$-wave two-particle channels enter first at quadratic order. We explain how to implement the resulting multichannel quantization condition, and present several examples of its application. We derive the leading dependence of the …
Parity-violating interactions of cosmic fields with atoms, molecules, and nuclei: Concepts and calculations for laboratory searches and extracting li…
2014
We propose methods and present calculations that can be used to search for evidence of cosmic fields by investigating the parity-violating effects, including parity nonconservation amplitudes and electric dipole moments, that they induce in atoms. The results are used to constrain important fundamental parameters describing the strength of the interaction of various cosmic fields with electrons, protons, and neutrons. Candidates for such fields are dark matter (including axions) and dark energy, as well as several more exotic sources described by standard-model extensions. Existing parity nonconservation experiments in Cs, Dy, Yb, and Tl are combined with our calculations to directly place …
New generation low-energy probes for ultralight axion and scalar dark matter
2017
We present a brief overview of a new generation of high-precision laboratory and astrophysical measurements to search for ultralight (sub-eV) axion, axion-like pseudoscalar and scalar dark matter, which form either a coherent condensate or topological defects (solitons). In these new detection methods, the sought effects are linear in the interaction constant between dark matter and ordinary matter, which is in stark contrast to traditional searches for dark matter, where the sought effects are quadratic or higher order in the underlying interaction constants (which are extremely small).
Demonstration of sensitivity increase in mercury free-spin-precession magnetometers due to laser-based readout for neutron electric dipole moment sea…
2018
International audience; We report on a laser based $^{199}$Hg co-magnetometer deployed in an experiment searching for a permanent electric dipole moment of the neutron. We demonstrate a more than five times increased signal to-noise-ratio in a direct comparison measurement with its $^{204}$Hg discharge bulb-based predecessor. An improved data model for the extraction of important system parameters such as the degrees of absorption and polarization is derived. Laser- and lamp-based data-sets can be consistently described by the improved model which permits to compare measurements using the two different light sources and to explain the increase in magnetometer performance. The laser-based ma…
A facility for production and laser cooling of cesium isotopes and isomers
2018
We report on the design, installation, and test of an experimental facility for the production of ultra-cold atomic isotopes and isomers of cesium. The setup covers a broad span of mass numbers and nuclear isomers, allowing one to directly compare chains of isotopes and isotope/isomer pairs. Cesium nuclei are produced by fission or fusion-evaporation reactions using primary proton beams from a 130 MeV cyclotron impinging upon a suitable target. The species of interest is ejected from the target in ionic form, electrostatically accelerated, mass separated, and routed to a science chamber. Here, ions are neutralized by implantation in a thin foil, and extracted by thermal diffusion. A neutral…