Search results for " atomic physics"
showing 10 items of 344 documents
Atomic physics studies at the gamma factory at CERN
2020
The Gamma Factory initiative proposes to develop novel research tools at CERN by producing, accelerating and storing highly relativistic, partially stripped ion beams in the SPS and LHC storage rings. By exciting the electronic degrees of freedom of the stored ions with lasers, high-energy narrow-band photon beams will be produced by properly collimating the secondary radiation that is peaked in the direction of ions' propagation. Their intensities, up to $10^{17}$ photons per second, will be several orders of magnitude higher than those of the presently operating light sources in the particularly interesting $\gamma$--ray energy domain reaching up to 400 MeV. This article reviews opportuni…
Fourier transform spectroscopy, relativistic electronic structure calculation, and coupled-channel deperturbation analysis of the fully mixed $A^1\Si…
2019
The 4503 rovibronic term values belonging to the mutually perturbed $A^1\Sigma^+_u$ and $b^3\Pi_u$ states of Cs$_2$ were extracted from laser induced fluorescence (LIF) $A\sim b\rightarrow X^1\Sigma^+_g$ Fourier transform spectra with the 0.01 cm$^{-1}$ uncertainty. The experimental term values of the $A^1\Sigma^+_u\sim b^3\Pi_u$ complex covering the rotational levels $J\in [4,395]$ in the excitation energy range $[9655,13630]$ cm$^{-1}$ were involved into coupled-channel (CC) deperturbation analysis. The deperturbation model takes explicitly into account spin-orbit coupling of the $A^1\Sigma^+_u(A0^+_u)$ and $b^3\Pi^+_{0_u}(b0^+_u)$ states as well as spin-rotational interaction between the…
The coupling of the X$^{1}\Sigma ^{+}$ and a$^{3}\Sigma ^{+}$ states of KRb
2007
A comprehensive study of the electronic states at the 4s+5s asymptote in KRb is presented. Abundant spectroscopic data on the \astate state were collected by Fourier-transform spectroscopy which allow to determine an accurate experimental potential energy curve up to 14.8 \AA . The existing data set (C. Amiot et al. J. Chem. Phys. 112, 7068 (2000)) on the ground state \Xstate was extended by several additional levels lying close to the atomic asymptote. In a coupled channels fitting routine complete molecular potentials for both electronic states were fitted. Along with the line frequencies of the molecular transitions, recently published positions of Feshbach resonances in $^{40}$K and $^{…
Energy and radiative properties of the (3)1{\Pi} and (5)1{\Sigma}+ states of RbCs: Experiment and theory
2019
We combined high-resolution Fourier-transform spectroscopy and large-scale electronic structure calculation to study energy and radiative properties of the high-lying (3)1{\Pi} and (5)1{\Sigma}+ states of the RbCs molecule. The laser-induced (5)1{\Sigma}+(4)1{\Sigma}+(3)1{\Pi}-A(2)1{\Sigma}+ b(1)3{\Pi} fluorescence (LIF) spectra were recorded by the Bruker IFS-125(HR) spectrometer in the frequency range {\nu} 5500 to 10000cm-1 with the instrumental resolution of 0.03 cm-1. The rotational assignment of the observed LIF progressions, which exhibit irregular vibrational-rotational spacing due to strong spin-orbit interaction between A1{\Sigma}+ and b3(\Pi) states was based on the coincidences …
Global analysis of data on the spin-orbit coupled $A^{1}\Sigma_{u}^{+}$ and $b^{3}\Pi_{u}$ states of Cs2
2011
We present experimentally derived potential curves and spin-orbit interaction functions for the strongly perturbed $A^{1}\Sigma_{u}^{+}$ and $b^{3}\Pi_{u}$ states of the cesium dimer. The results are based on data from several sources. Laser-induced fluorescence Fourier transform spectroscopy (LIF FTS) was used some time ago in the Laboratoire Aim\'{e} Cotton primarily to study the $X ^{1}\Sigma_{g}^{+}$ state. More recent work at Tsinghua University provides information from moderate resolution spectroscopy on the lowest levels of the $b^{3}\Pi_{0u}^{\pm}$ states as well as additional high resolution data. From Innsbruck University, we have precision data obtained with cold Cs$_{2}$ molecu…
Magnetic field stabilization for high-accuracy mass measurements on exotic nuclides
2007
The magnetic-field stability of a mass spectrometer plays a crucial role in precision mass measurements. In the case of mass determination of short-lived nuclides with a Penning trap, major causes of instabilities are temperature fluctuations in the vicinity of the trap and pressure fluctuations in the liquid helium cryostat of the superconducting magnet. Thus systems for the temperature and pressure stabilization of the Penning trap mass spectrometer ISOLTRAP at the ISOLDE facility at CERN have been installed. A reduction of the fluctuations by at least one order of magnitude downto dT=+/-5mK and dp=+/-50mtorr has been achieved, which corresponds to a relative frequency change of 2.7x10^{-…
Neutral Bremsstrahlung emission in xenon unveiled
2022
We present evidence of non-excimer-based secondary scintillation in gaseous xenon, obtained using both the NEXT-White TPC and a dedicated setup. Detailed comparison with first-principle calculations allows us to assign this scintillation mechanism to neutral bremsstrahlung (NBrS), a process that has been postulated to exist in xenon that has been largely overlooked. For photon emission below 1000 nm, the NBrS yield increases from about 10$^{-2}$ photon/e$^{-}$ cm$^{-1}$ bar$^{-1}$ at pressure-reduced electric field values of 50 V cm$^{-1}$ bar$^{-1}$ to above 3$\times$10$^{-1}$ photon/e$^{-}$ cm$^{-1}$ bar$^{-1}$ at 500 V cm$^{-1}$ bar$^{-1}$. Above 1.5 kV cm$^{-1}$ bar$^{-1}$, values that …
Autonomous frequency stabilization of two extended cavity diode lasers at the potassium wavelength on a sounding rocket
2016
We have developed, assembled, and flight-proven a stable, compact, and autonomous extended cavity diode laser (ECDL) system designed for atomic physics experiments in space. To that end, two micro-integrated ECDLs at 766.7 nm were frequency stabilized during a sounding rocket flight by means of frequency modulation spectroscopy (FMS) of 39^K and offset locking techniques based on the beat note of the two ECDLs. The frequency stabilization as well as additional hard- and software to test hot redundancy mechanisms were implemented as part of a state-machine, which controlled the experiment completely autonomously throughout the entire flight mission.
Application of spin-exchange relaxation-free magnetometry to the Cosmic Axion Spin Precession Experiment
2018
The Cosmic Axion Spin Precession Experiment (CASPEr) seeks to measure oscillating torques on nuclear spins caused by axion or axion-like-particle (ALP) dark matter via nuclear magnetic resonance (NMR) techniques. A sample spin-polarized along a leading magnetic field experiences a resonance when the Larmor frequency matches the axion/ALP Compton frequency, generating precessing transverse nuclear magnetization. Here we demonstrate a Spin-Exchange Relaxation-Free (SERF) magnetometer with sensitivity $\approx 1~{\rm fT/\sqrt{Hz}}$ and an effective sensing volume of 0.1 $\rm{cm^3}$ that may be useful for NMR detection in CASPEr. A potential drawback of SERF-magnetometer-based NMR detection is …
Dynamic stabilization of the magnetic field surrounding the neutron electric dipole moment spectrometer at the Paul Scherrer Institute
2014
The Surrounding Field Compensation (SFC) system described in this work is installed around the four-layer Mu-metal magnetic shield of the neutron electric dipole moment spectrometer located at the Paul Scherrer Institute. The SFC system reduces the DC component of the external magnetic field by a factor of about 20. Within a control volume of approximately 2.5m x 2.5m x 3m disturbances of the magnetic field are attenuated by factors of 5 to 50 at a bandwidth from $10^{-3}$ Hz up to 0.5 Hz, which corresponds to integration times longer than several hundreds of seconds and represent the important timescale for the nEDM measurement. These shielding factors apply to random environmental noise f…