6533b7d3fe1ef96bd1260162

RESEARCH PRODUCT

Application of spin-exchange relaxation-free magnetometry to the Cosmic Axion Spin Precession Experiment

Arne WickenbrockTao WangDmitry BudkerDmitry BudkerDmitry BudkerAlexander O. SushkovGary P. CentersDeniz AybasJiancheng FangSean R. O KelleyJohn W. BlanchardDerek F. Jackson Kimball

subject

Physics - Instrumentation and DetectorsMagnetometerAtomic Physics (physics.atom-ph)FOS: Physical sciences01 natural sciences7. Clean energylaw.inventionPhysics - Atomic Physics010309 opticsMagnetizationPhysics - Space Physicslaw0103 physical sciences010306 general physicsAxionLarmor precessionPhysicsSpinsAstronomy and AstrophysicsInstrumentation and Detectors (physics.ins-det)Magnetic fluxSpace Physics (physics.space-ph)Magnetic fieldSpace and Planetary SciencePrecessionAtomic physics

description

The Cosmic Axion Spin Precession Experiment (CASPEr) seeks to measure oscillating torques on nuclear spins caused by axion or axion-like-particle (ALP) dark matter via nuclear magnetic resonance (NMR) techniques. A sample spin-polarized along a leading magnetic field experiences a resonance when the Larmor frequency matches the axion/ALP Compton frequency, generating precessing transverse nuclear magnetization. Here we demonstrate a Spin-Exchange Relaxation-Free (SERF) magnetometer with sensitivity $\approx 1~{\rm fT/\sqrt{Hz}}$ and an effective sensing volume of 0.1 $\rm{cm^3}$ that may be useful for NMR detection in CASPEr. A potential drawback of SERF-magnetometer-based NMR detection is the SERF's limited dynamic range. Use of a magnetic flux transformer to suppress the leading magnetic field is considered as a potential method to expand the SERF's dynamic range in order to probe higher axion/ALP Compton frequencies.

10.1016/j.dark.2017.11.003http://dx.doi.org/10.1016/j.dark.2017.11.003