Search results for " atomic physics"
showing 10 items of 344 documents
Nanofiber-based optical trapping of cold neutral atoms
2012
We present experimental techniques and results related to the optimization and characterization of our nanofiber-based atom trap [Vetsch et al., Phys. Rev. Lett. 104, 203603 (2010)]. The atoms are confined in an optical lattice which is created using a two-color evanescent field surrounding the optical nanofiber. For this purpose, the polarization state of the trapping light fields has to be properly adjusted. We demonstrate that this can be accomplished by analyzing the light scattered by the nanofiber. Furthermore, we show that loading the nanofiber trap from a magneto-optical trap leads to sub-Doppler temperatures of the trapped atomic ensemble and yields a sub-Poissonian distribution of…
Search for New Physics with Atoms and Molecules
2017
This article reviews recent developments in tests of fundamental physics using atoms and molecules, including the subjects of parity violation, searches for permanent electric dipole moments, tests of the CPT theorem and Lorentz symmetry, searches for spatiotemporal variation of fundamental constants, tests of quantum electrodynamics, tests of general relativity and the equivalence principle, searches for dark matter, dark energy and extra forces, and tests of the spin-statistics theorem. Key results are presented in the context of potential new physics and in the broader context of similar investigations in other fields. Ongoing and future experiments of the next decade are discussed.
Photoassociative production and trapping of ultracold KRb molecules.
2004
We have produced ultracold heteronuclear KRb molecules by the process of photoassociation in a two-species magneto-optical trap. Following decay of the photoassociated KRb*, the molecules are detected using two-photon ionization and time-of-flight mass spectroscopy of KRb$^+$. A portion of the metastable triplet molecules thus formed are magnetically trapped. Photoassociative spectra down to 91 cm$^{-1}$ below the K(4$s$) + Rb (5$p_{1/2}$) asymptote have been obtained. We have made assignments to all eight of the attractive Hund's case (c) KRb* potential curves in this spectral region.
Highly controlled optical transport of cold atoms into a hollow-core fiber
2018
We report on an efficient and highly controlled cold atom hollow-core fiber interface, suitable for quantum simulation, information, and sensing. The main focus of this manuscript is a detailed study on transporting cold atoms into the fiber using an optical conveyor belt. We discuss how we can precisely control the spatial, thermal, and temporal distribution of the atoms by, e.g., varying the speed at which the atoms are transported or adjusting the depth of the transport potential according to the atomic position. We characterize the transport of atoms to the fiber tip for these different parameters. In particular, we show that by adapting the transport potential we can lower the temperat…
Rydberg Excitation of a Single Trapped Ion.
2015
We demonstrate excitation of a single trapped cold $^{40}$Ca$^+$ ion to Rydberg levels by laser radiation in the vacuum-ultraviolet at 122 nm wavelength. Observed resonances are identified as 3d$^2$D$_{3/2}$ to 51 F, 52 F and 3d$^2$D$_{5/2}$ to 64F. We model the lineshape and our results imply a large state-dependent coupling to the trapping potential. Rydberg ions are of great interest for future applications in quantum computing and simulation, in which large dipolar interactions are combined with the superb experimental control offered by Paul traps.
Entangled states of trapped ions allow measuring the magnetic field gradient produced by a single atomic spin
2012
Using trapped ions in an entangled state we propose detecting a magnetic dipole of a single atom at distance of a few $\mu$m. This requires a measurement of the magnetic field gradient at a level of about 10$^{-13}$ Tesla/$\mu$m. We discuss applications e.g. in determining a wide variation of ionic magnetic moments, for investigating the magnetic substructure of ions with a level structure not accessible for optical cooling and detection,and for studying exotic or rare ions, and molecular ions. The scheme may also be used for measureing spin imbalances of neutral atoms or atomic ensembles trapped by optical dipole forces. As the proposed method relies on techniques well established in ion t…
Entanglement interferometry for precision measurement of atomic scattering properties.
2003
We report on a two-particle matter wave interferometer realized with pairs of trapped 87Rb atoms. Each pair of atoms is confined at a single site of an optical lattice potential. The interferometer is realized by first creating a coherent spin-mixture of the two atoms and then tuning the inter-state scattering length via a Feshbach resonance. The selective change of the inter-state scattering length leads to an entanglement dynamics of the two-particle state that can be detected in a Ramsey interference experiment. This entanglement dynamics is employed for a precision measurement of atomic interaction parameters. Furthermore, the interferometer allows to separate lattice sites with one or …
Trapped Rydberg ions: a new platform for quantum information processing
2020
In this chapter, we present an overview of experiments with trapped Rydberg ions and outline the advantages and challenges of developing applications of this new platform for quantum computing, sensing and simulation. Trapped Rydberg ions feature several important properties, unique in their combination: they are tightly bound in a harmonic potential of a Paul trap, in which their internal and external degrees of freedom can be controlled in a precise fashion. High fidelity state preparation of both internal and motional states of the ions has been demonstrated, and the internal states have been employed to store and manipulate qubit information. Furthermore, strong dipolar interactions can…
Dispersive optical interface based on nanofiber-trapped atoms.
2011
We dispersively interface an ensemble of one thousand atoms trapped in the evanescent field surrounding a tapered optical nanofiber. This method relies on the azimuthally-asymmetric coupling of the ensemble with the evanescent field of an off-resonant probe beam, transmitted through the nanofiber. The resulting birefringence and dispersion are significant; we observe a phase shift per atom of $\sim$\,1\,mrad at a detuning of six times the natural linewidth, corresponding to an effective resonant optical density per atom of 0.027. Moreover, we utilize this strong dispersion to non-destructively determine the number of atoms.
Search for topological defect dark matter with a global network of optical magnetometers
2021
Ultralight bosons such as axion-like particles are viable candidates for dark matter. They can form stable, macroscopic field configurations in the form of topological defects that could concentrate the dark matter density into many distinct, compact spatial regions that are small compared with the Galaxy but much larger than the Earth. Here we report the results of the search for transient signals from the domain walls of axion-like particles by using the global network of optical magnetometers for exotic (GNOME) physics searches. We search the data, consisting of correlated measurements from optical atomic magnetometers located in laboratories all over the world, for patterns of signals p…