6533b7defe1ef96bd1275e0d
RESEARCH PRODUCT
Entanglement interferometry for precision measurement of atomic scattering properties.
Artur WideraTheodor W. HänschImmanuel BlochOlaf MandelMarkus GreinerSusanne Kreimsubject
Condensed Matter::Quantum GasesPhysicsQuantum PhysicsOptical latticeAtomic Physics (physics.atom-ph)ScatteringFOS: Physical sciencesGeneral Physics and AstronomyScattering lengthQuantum entanglementCondensed Matter - Soft Condensed MatterPhysics - Atomic PhysicsInterferometrySuperposition principleQuantum mechanicsSoft Condensed Matter (cond-mat.soft)Physics::Atomic PhysicsMatter waveAtomic physicsQuantum Physics (quant-ph)Feshbach resonancedescription
We report on a two-particle matter wave interferometer realized with pairs of trapped 87Rb atoms. Each pair of atoms is confined at a single site of an optical lattice potential. The interferometer is realized by first creating a coherent spin-mixture of the two atoms and then tuning the inter-state scattering length via a Feshbach resonance. The selective change of the inter-state scattering length leads to an entanglement dynamics of the two-particle state that can be detected in a Ramsey interference experiment. This entanglement dynamics is employed for a precision measurement of atomic interaction parameters. Furthermore, the interferometer allows to separate lattice sites with one or two atoms in a non-destructive way.
year | journal | country | edition | language |
---|---|---|---|---|
2003-10-30 | Physical review letters |