0000000000424304
AUTHOR
Olaf Mandel
Entanglement interferometry for precision measurement of atomic scattering properties.
We report on a two-particle matter wave interferometer realized with pairs of trapped 87Rb atoms. Each pair of atoms is confined at a single site of an optical lattice potential. The interferometer is realized by first creating a coherent spin-mixture of the two atoms and then tuning the inter-state scattering length via a Feshbach resonance. The selective change of the inter-state scattering length leads to an entanglement dynamics of the two-particle state that can be detected in a Ramsey interference experiment. This entanglement dynamics is employed for a precision measurement of atomic interaction parameters. Furthermore, the interferometer allows to separate lattice sites with one or …
Spatial quantum noise interferometry in expanding ultracold atom clouds
It is ten years since the exotic form of matter known as a Bose–Einstein condensate was first created. It was the birth of ultra-low-temperature physics, and practitioners gathered last month in Banff, Canada, to celebrate and discuss the latest news, as Karen Fox reports. And this week a new development that could have a major impact in the field is announced. In the 1950s, Hanbury Brown and Twiss showed that it is possible to measure angular sizes of astronomical radio sources from correlations of signal intensities in independent detectors. ‘HBT interferometry’ later became a key technique in quantum optics, and now it has been harnessed to identify a quantum phase of ultracold bosonic a…
Precision measurement of spin-dependent interaction strengths for spin-1 and spin-2 87Rb atoms
We report on precision measurements of spin-dependent interaction-strengths in the 87Rb spin-1 and spin-2 hyperfine ground states. Our method is based on the recent observation of coherence in the collisionally driven spin-dynamics of ultracold atom pairs trapped in optical lattices. Analysis of the Rabi-type oscillations between two spin states of an atom pair allows a direct determination of the coupling parameters in the interaction hamiltonian. We deduce differences in scattering lengths from our data that can directly be compared to theoretical predictions in order to test interatomic potentials. Our measurements agree with the predictions within 20%. The knowledge of these coupling pa…
Space-borne frequency comb metrology
Precision time references in space are of major importance to satellite-based fundamental science, global satellite navigation, earth observation, and satellite formation flying. Here we report on the operation of a compact, rugged, and automated optical frequency comb setup on a sounding rocket in space under microgravity. The experiment compared two clocks, one based on the optical D2 transition in Rb, and another on hyperfine splitting in Cs. This represents the first frequency comb based optical clock operation in space, which is an important milestone for future satellite-based precision metrology. Based on the approach demonstrated here, future space-based precision metrology can be i…
Phase coherence of an atomic Mott insulator
International audience; We investigate the phase coherence properties of ultracold Bose gases in optical lattices, with special emphasis on the Mott insulating phase. We show that phase coherence on short length scales persists even deep in the insulating phase, preserving a finite visibility of the interference pattern observed after free expansion. This behavior can be attributed to a coherent admixture of particle/hole pairs to the perfect Mott state for small but finite tunneling. In addition, small but reproducible ``kinks'' are seen in the visibility, in a broad range of atom numbers. We interpret them as signatures for density redistribution in the shell structure of the trapped Mott…
Interference pattern and visibility of a Mott insulator
We analyze theoretically the experiment reported in [F. Gerbier et al, cond-mat/0503452], where the interference pattern produced by an expanding atomic cloud in the Mott insulator regime was observed. This interference pattern, indicative of short-range coherence in the system, could be traced back to the presence of a small amount of particle/hole pairs in the insulating phase for finite lattice depths. In this paper, we analyze the influence of these pairs on the interference pattern using a random phase approximation, and derive the corresponding visibility. We also account for the inhomogeneity inherent to atom traps in a local density approximation. The calculations reproduce the expe…
Coherent collisional spin dynamics in optical lattices
We report on the observation of coherent, purely collisionally driven spin dynamics of neutral atoms in an optical lattice. For high lattice depths, atom pairs confined to the same lattice site show weakly damped Rabi-type oscillations between two-particle Zeeman states of equal magnetization, induced by spin changing collisions. This paves the way towards the efficient creation of robust entangled atom pairs in an optical lattice. Moreover, measurement of the oscillation frequency allows for precise determination of the spin-changing collisional coupling strengths, which are directly related to fundamental scattering lengths describing interatomic collisions at ultracold temperatures.
Probing number squeezing of ultracold atoms across the superfluid-Mott insulator transition.
The evolution of on-site number fluctuations of ultracold atoms in optical lattices is experimentally investigated by monitoring the suppression of spin-changing collisions across the superfluid-Mott insulator transition. For low atom numbers, corresponding to an average filling factor close to unity, large on-site number fluctuations are necessary for spin-changing collisions to occur. The continuous suppression of spin-changing collisions is thus a direct evidence for the emergence of number-squeezed states. In the Mott insulator regime, we find that spin-changing collisions are suppressed until a threshold atom number, consistent with the number where a Mott plateau with doubly-occupied …
Resonant control of spin dynamics in ultracold quantum gases by microwave dressing
We study experimentally interaction-driven spin oscillations in optical lattices in the presence of an off-resonant microwave field. We show that the energy shift induced by this microwave field can be used to control the spin oscillations by tuning the system either into resonance to achieve near-unity contrast or far away from resonance to suppress the oscillations. Finally, we propose a scheme based on this technique to create a flat sample with either singly- or doubly-occupied sites, starting from an inhomogeneous Mott insulator, where singly- and doubly-occupied sites coexist.