6533b836fe1ef96bd12a09d7

RESEARCH PRODUCT

Phase coherence of an atomic Mott insulator

Simon FöllingTatjana GerickeImmanuel BlochOlaf MandelFabrice GerbierArtur Widera

subject

PhysicsCondensed Matter::Quantum GasesCondensed matter physicsMott insulatorGeneral Physics and AstronomyFOS: Physical sciences01 natural sciences010305 fluids & plasmaslaw.inventionMott transitionCondensed Matter - Other Condensed MatterTunnel effectlaw[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]0103 physical sciencesAtomFree expansionCondensed Matter::Strongly Correlated ElectronsMetal–insulator transition010306 general physicsBose–Einstein condensateQuantum tunnellingOther Condensed Matter (cond-mat.other)

description

International audience; We investigate the phase coherence properties of ultracold Bose gases in optical lattices, with special emphasis on the Mott insulating phase. We show that phase coherence on short length scales persists even deep in the insulating phase, preserving a finite visibility of the interference pattern observed after free expansion. This behavior can be attributed to a coherent admixture of particle/hole pairs to the perfect Mott state for small but finite tunneling. In addition, small but reproducible ``kinks'' are seen in the visibility, in a broad range of atom numbers. We interpret them as signatures for density redistribution in the shell structure of the trapped Mott insulator.

10.1103/physrevlett.95.050404https://hal.archives-ouvertes.fr/hal-00116291