0000000000004279

AUTHOR

Immanuel Bloch

Exploring Quantum Matter with Ultracold Atoms in Optical Lattices

Publisher Summary This chapter explores quantum matter with ultracold atoms in optical lattices. The chapter focuses on bosonic atoms in optical lattices and on the regime where strong correlations between the atoms become important. In the interaction of atoms with coherent light fields, two fundamental forces arise. The Doppler force is dissipative in nature and can be used to efficiently laser cool a gas of atoms and relies on the radiation pressure together with spontaneous emission. The dipole force creates a purely conservative potential in which the atoms can move. No cooling can be realized with this dipole force, however if the atoms are cold enough initially, they may be trapped i…

research product

Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms

The transport measurements of an interacting fermionic quantum gas in an optical lattice provide a direct experimental realization of the Hubbard model—one of the central models for interacting electrons in solids—and give insights into the transport properties of many-body phases in condensed-matter physics.

research product

Spin pumping and measurement of spin currents in optical superlattices

We report on the experimental implementation of a spin pump with ultracold bosonic atoms in an optical superlattice. In the limit of isolated double wells, it represents a 1D dynamical version of the quantum spin Hall effect. Starting from an antiferromagnetically ordered spin chain, we periodically vary the underlying spin-dependent Hamiltonian and observe a spin current without charge transport. We demonstrate a novel detection method to measure spin currents in optical lattices via superexchange oscillations emerging after a projection onto static double wells. Furthermore, we directly verify spin transport through in situ measurements of the spins' center-of-mass displacement.

research product

Time-resolved Observation and Control of Superexchange Interactions with Ultracold Atoms in Optical Lattices

Quantum mechanical superexchange interactions form the basis of quantum magnetism in strongly correlated electronic media. We report on the direct measurement of superexchange interactions with ultracold atoms in optical lattices. After preparing a spin-mixture of ultracold atoms in an antiferromagnetically ordered state, we measure a coherent superexchange-mediated spin dynamics with coupling energies from 5 Hz up to 1 kHz. By dynamically modifying the potential bias between neighboring lattice sites, the magnitude and sign of the superexchange interaction can be controlled, thus allowing the system to be switched between antiferromagnetic or ferromagnetic spin interactions. We compare our…

research product

Formation of spatial shell structures in the superfluid to Mott insulator transition

International audience; We report on the direct observation of the transition from a compressible superfluid to an incompressible Mott insulator by recording the in-trap density distribution of a Bosonic quantum gas in an optical lattice. Using spatially selective microwave transitions and spin changing collisions, we are able to locally modify the spin state of the trapped quantum gas and record the spatial distribution of lattice sites with different filling factors. As the system evolves from a superfluid to a Mott insulator, we observe the formation of a distinct shell structure, in good agreement with theory.

research product

Minimum instances of topological matter in an optical plaquette

We propose experimental schemes to create and probe minimum forms of different topologically ordered states in a plaquette of an optical lattice: Resonating Valence Bond, Laughlin and string-net condensed states. We show how to create anyonic excitations on top of these liquids and detect their fractional statistics. In addition, we propose a way to design a plaquette ring-exchange interaction, the building block Hamiltonian of a lattice topological theory. Our preparation and detection schemes combine different techniques already demonstrated in experiments with atoms in optical superlattices.

research product

Ultracold atoms in optical lattices

This article focuses on the characteristics and properties ultracold atoms in optical lattices.

research product

Counting atoms using interaction blockade in an optical superlattice.

We report on the observation of an interaction blockade effect for ultracold atoms in optical lattices, analogous to Coulomb blockade observed in mesoscopic solid state systems. When the lattice sites are converted into biased double wells, we detect a discrete set of steps in the well population for increasing bias potentials. These correspond to tunneling resonances where the atom number on each side of the barrier changes one by one. This allows us to count and control the number of atoms within a given well. By evaluating the amplitude of the different plateaus, we can fully determine the number distribution of the atoms in the lattice, which we demonstrate for the case of a superfluid …

research product

Electromagnetically Induced Transparency and Light Storage in an Atomic Mott Insulator

We experimentally demonstrate electromagnetically induced transparency and light storage with ultracold 87Rb atoms in a Mott insulating state in a three dimensional optical lattice. We have observed light storage times of about 240 ms, to our knowledge the longest ever achieved in ultracold atomic samples. Using the differential light shift caused by a spatially inhomogeneous far detuned light field we imprint a "phase gradient" across the atomic sample, resulting in controlled angular redirection of the retrieved light pulse.

research product

Entanglement interferometry for precision measurement of atomic scattering properties.

We report on a two-particle matter wave interferometer realized with pairs of trapped 87Rb atoms. Each pair of atoms is confined at a single site of an optical lattice potential. The interferometer is realized by first creating a coherent spin-mixture of the two atoms and then tuning the inter-state scattering length via a Feshbach resonance. The selective change of the inter-state scattering length leads to an entanglement dynamics of the two-particle state that can be detected in a Ramsey interference experiment. This entanglement dynamics is employed for a precision measurement of atomic interaction parameters. Furthermore, the interferometer allows to separate lattice sites with one or …

research product

Free fermion antibunching in a degenerate atomic Fermi gas released from an optical lattice

Noise in a quantum system is fundamentally governed by the statistics and the many-body state of the underlying particles. Whereas for bosonic particles the correlated noise observed for e.g. photons or bosonic neutral atoms can still be explained within a classical field description with fluctuating phases, the anticorrelations in the detection of fermionic particles have no classical analogue. The observation of such fermionic antibunching is so far scarce and has been confined to electrons and neutrons. Here we report on the first direct observation of antibunching of neutral fermionic atoms. Through an analysis of the atomic shot noise in a set of standard absorption images, of a gas of…

research product

Direct observation of second-order atom tunnelling

Tunnelling of material particles through a classically impenetrable barrier constitutes one of the hallmark effects of quantum physics. When interactions between the particles compete with their mobility through a tunnel junction, intriguing novel dynamical behaviour can arise where particles do not tunnel independently. In single-electron or Bloch transistors, for example, the tunnelling of an electron or Cooper pair can be enabled or suppressed by the presence of a second charge carrier due to Coulomb blockade. Here we report on the first direct and time-resolved observation of correlated tunnelling of two interacting atoms through a barrier in a double well potential. We show that for we…

research product

Coherent and incoherent spectral broadening in a photonic crystal fiber.

The coherence of the spectral broadening process is the key requisite for the application of supercontinua in frequency combs. We investigate the coherence of two subsequent supercontinuum pulses created in a photonic crystal fiber pumped by a femtosecond laser. We measure Young interference fringes from a Michelson-type interferometer at different wavelengths of the output spectrum and analyze their dependence on pump intensity and polarization. The visibility of these fringes is a direct measure of the coherence of the spectral broadening processes.

research product

Expansion of a quantum gas released from an optical lattice

We analyze the interference pattern produced by ultracold atoms released from an optical lattice. Such interference patterns are commonly interpreted as the momentum distributions of the trapped quantum gas. We show that for finite time-of-flights the resulting density distribution can, however, be significantly altered, similar to a near-field diffraction regime in optics. We illustrate our findings with a simple model and realistic quantum Monte Carlo simulations for bosonic atoms, and compare the latter to experiments.

research product

Spatial quantum noise interferometry in expanding ultracold atom clouds

It is ten years since the exotic form of matter known as a Bose–Einstein condensate was first created. It was the birth of ultra-low-temperature physics, and practitioners gathered last month in Banff, Canada, to celebrate and discuss the latest news, as Karen Fox reports. And this week a new development that could have a major impact in the field is announced. In the 1950s, Hanbury Brown and Twiss showed that it is possible to measure angular sizes of astronomical radio sources from correlations of signal intensities in independent detectors. ‘HBT interferometry’ later became a key technique in quantum optics, and now it has been harnessed to identify a quantum phase of ultracold bosonic a…

research product

Quantum coherence and entanglement with ultracold atoms in optical lattices

At nanokelvin temperatures, ultracold quantum gases can be stored in optical lattices, which are arrays of microscopic trapping potentials formed by laser light. Such large arrays of atoms provide opportunities for investigating quantum coherence and generating large-scale entanglement, ultimately leading to quantum information processing in these artificial crystal structures. These arrays can also function as versatile model systems for the study of strongly interacting many-body systems on a lattice.

research product

Precision measurement of spin-dependent interaction strengths for spin-1 and spin-2 87Rb atoms

We report on precision measurements of spin-dependent interaction-strengths in the 87Rb spin-1 and spin-2 hyperfine ground states. Our method is based on the recent observation of coherence in the collisionally driven spin-dynamics of ultracold atom pairs trapped in optical lattices. Analysis of the Rabi-type oscillations between two spin states of an atom pair allows a direct determination of the coupling parameters in the interaction hamiltonian. We deduce differences in scattering lengths from our data that can directly be compared to theoretical predictions in order to test interatomic potentials. Our measurements agree with the predictions within 20%. The knowledge of these coupling pa…

research product

Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice

The fermionic Hubbard model plays a fundamental role in the description of strongly correlated materials. Here we report on the realization of this Hamiltonian using a repulsively interacting spin mixture of ultracold $^{40}$K atoms in a 3D optical lattice. We have implemented a new method to directly measure the compressibility of the quantum gas in the trap using in-situ imaging and independent control of external confinement and lattice depth. Together with a comparison to ab-initio Dynamical Mean Field Theory calculations, we show how the system evolves for increasing confinement from a compressible dilute metal over a strongly-interacting Fermi liquid into a band insulating state. For …

research product

Time-resolved observation of coherent multi-body interactions in quantum phase revivals

Interactions between microscopic particles are usually described as two-body interactions, although it has been shown that higher order multi-body interactions could give rise to novel quantum phases with intriguing properties. This paper demonstrates effective six-body interactions in a system of ultracold bosonic atoms in a three-dimensional optical lattice. The coherent multi-particle interactions observed here open a new window for simulations of effective field theories and may help to enable the realization of novel topologically ordered many-body quantum phases. Interactions between microscopic particles are usually described as two-body interactions, although it has been shown that …

research product

State preparation and dynamics of ultracold atoms in higher lattice orbitals

We report on the realization of a multi-orbital system with ultracold atoms in the excited bands of a 3D optical lattice by selectively controlling the band population along a given lattice direction. The lifetime of the atoms in the excited band is found to be considerably longer (10-100 times) than the characteristic time scale for inter-site tunneling, thus opening the path for orbital selective many-body physics with ultracold atoms. Upon exciting the atoms from an initial lowest band Mott insulating state to higher lying bands, we observe the dynamical emergence of coherence in 1D (and 2D), compatible with Bose-Einstein condensation to a non-zero momentum state.

research product

Phase coherence of an atomic Mott insulator

International audience; We investigate the phase coherence properties of ultracold Bose gases in optical lattices, with special emphasis on the Mott insulating phase. We show that phase coherence on short length scales persists even deep in the insulating phase, preserving a finite visibility of the interference pattern observed after free expansion. This behavior can be attributed to a coherent admixture of particle/hole pairs to the perfect Mott state for small but finite tunneling. In addition, small but reproducible ``kinks'' are seen in the visibility, in a broad range of atom numbers. We interpret them as signatures for density redistribution in the shell structure of the trapped Mott…

research product

Many-body physics with ultracold gases

This article reviews recent experimental and theoretical progress on many-body phenomena in dilute, ultracold gases. Its focus are effects beyond standard weak-coupling descriptions, like the Mott-Hubbard-transition in optical lattices, strongly interacting gases in one and two dimensions or lowest Landau level physics in quasi two-dimensional gases in fast rotation. Strong correlations in fermionic gases are discussed in optical lattices or near Feshbach resonances in the BCS-BEC crossover.

research product

Quantum Spin Dynamics of Mode-Squeezed Luttinger Liquids in Two-Component Atomic Gases

We report on the observation of the phase dynamics of interacting one-dimensional ultracold bosonic gases with two internal degrees of freedom. By controlling the non-linear atomic interactions close to a Feshbach resonance we are able to induce a phase diffusive many-body spin dynamics. We monitor this dynamical evolution by Ramsey interferometry, supplemented by a novel, many-body echo technique. We find that the time evolution of the system is well described by a Luttinger liquid initially prepared in a multimode squeezed state. Our approach allows us to probe the non-equilibrium evolution of one-dimensional many-body quantum systems.

research product

Ultracold quantum gases in optical lattices

Artificial crystals of light, consisting of hundreds of thousands of optical microtraps, are routinely created by interfering optical laser beams. These so-called optical lattices act as versatile potential landscapes to trap ultracold quantum gases of bosons and fermions. They form powerful model systems of quantum many-body systems in periodic potentials for probing nonlinear wave dynamics and strongly correlated quantum phases, building fundamental quantum gates or observing Fermi surfaces in periodic potentials. Optical lattices represent a fast-paced modern and interdisciplinary field of research.

research product

Interference pattern and visibility of a Mott insulator

We analyze theoretically the experiment reported in [F. Gerbier et al, cond-mat/0503452], where the interference pattern produced by an expanding atomic cloud in the Mott insulator regime was observed. This interference pattern, indicative of short-range coherence in the system, could be traced back to the presence of a small amount of particle/hole pairs in the insulating phase for finite lattice depths. In this paper, we analyze the influence of these pairs on the interference pattern using a random phase approximation, and derive the corresponding visibility. We also account for the inhomogeneity inherent to atom traps in a local density approximation. The calculations reproduce the expe…

research product

Exploring quantum matter with ultracold atoms in optical lattices

Seventy years after Einstein's prediction, the seminal achievement of Bose–Einstein condensation in dilute atomic gases in 1995 has provided us with a new form of quantum matter. Such quantum matter can be described as a single giant matter wave. By loading it into an artificial periodic potential formed by laser light—a so-called optical lattice—it has become possible to probe matter far beyond the wave-like description. In a review of a series of experiments with ultracold quantum gases in optical lattices, we show that the granularity of the matter wave field, caused by the discreteness of atoms, gives rise to effects going beyond the simple single matter wave description. Bose–Einstein …

research product

Quantum gases in optical lattices

IMAGINE having an artificial substance in which you can control almost all aspects of the underlying periodic structure and the interactions between the atoms that make up this dream material. Such a substance would allow us to explore a whole range of fundamental phenomena that are extremely difficult – or impossible – to study in real materials. It may sound too good to be true, but over the last two years physicists have come extremely close to achieving this goal.

research product

Coherent collisional spin dynamics in optical lattices

We report on the observation of coherent, purely collisionally driven spin dynamics of neutral atoms in an optical lattice. For high lattice depths, atom pairs confined to the same lattice site show weakly damped Rabi-type oscillations between two-particle Zeeman states of equal magnetization, induced by spin changing collisions. This paves the way towards the efficient creation of robust entangled atom pairs in an optical lattice. Moreover, measurement of the oscillation frequency allows for precise determination of the spin-changing collisional coupling strengths, which are directly related to fundamental scattering lengths describing interatomic collisions at ultracold temperatures.

research product

Quantum many-body dynamics of coupled double-well superlattices

We propose a method for controllable generation of non-local entangled pairs using spinor atoms loaded in an optical superlattice. Our scheme iteratively increases the distance between entangled atoms by controlling the coupling between the double wells. When implemented in a finite linear chain of 2N atoms, it creates a triplet valence bond state with large persistency of entanglement (of the order of N). We also study the non-equilibrium dynamics of the one-dimensional ferromagnetic Heisenberg Hamiltonian and show that the time evolution of a state of decoupled triplets on each double well leads to the formation of a highly entangled state where short-distance antiferromagnetic correlatio…

research product

Anomalous Expansion of Attractively Interacting Fermionic Atoms in an Optical Lattice

Strong correlations can dramatically modify the thermodynamics of a quantum many-particle system. Especially intriguing behaviour can appear when the system adiabatically enters a strongly correlated regime, for the interplay between entropy and strong interactions can lead to counterintuitive effects. A well known example is the so-called Pomeranchuk effect, occurring when liquid 3He is adiabatically compressed towards its crystalline phase. Here, we report on a novel anomalous, isentropic effect in a spin mixture of attractively interacting fermionic atoms in an optical lattice. As we adiabatically increase the attraction between the atoms we observe that the gas, instead of contracting, …

research product

Probing number squeezing of ultracold atoms across the superfluid-Mott insulator transition.

The evolution of on-site number fluctuations of ultracold atoms in optical lattices is experimentally investigated by monitoring the suppression of spin-changing collisions across the superfluid-Mott insulator transition. For low atom numbers, corresponding to an average filling factor close to unity, large on-site number fluctuations are necessary for spin-changing collisions to occur. The continuous suppression of spin-changing collisions is thus a direct evidence for the emergence of number-squeezed states. In the Mott insulator regime, we find that spin-changing collisions are suppressed until a threshold atom number, consistent with the number where a Mott plateau with doubly-occupied …

research product

Resonant control of spin dynamics in ultracold quantum gases by microwave dressing

We study experimentally interaction-driven spin oscillations in optical lattices in the presence of an off-resonant microwave field. We show that the energy shift induced by this microwave field can be used to control the spin oscillations by tuning the system either into resonance to achieve near-unity contrast or far away from resonance to suppress the oscillations. Finally, we propose a scheme based on this technique to create a flat sample with either singly- or doubly-occupied sites, starting from an inhomogeneous Mott insulator, where singly- and doubly-occupied sites coexist.

research product