6533b85ffe1ef96bd12c275c
RESEARCH PRODUCT
Quantum many-body dynamics of coupled double-well superlattices
Peter BarmettlerVladimir GritsevAna Maria ReyEugene DemlerImmanuel BlochMikhail D. Lukinsubject
Condensed Matter::Quantum GasesPhysicsQuantum PhysicsStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsSuperlatticeTime evolutionFOS: Physical sciencesQuantum simulatorQuantum entanglementAtomic and Molecular Physics and OpticsCondensed Matter - Other Condensed MatterCondensed Matter - Strongly Correlated Electronssymbols.namesakeQuantum mechanicssymbolsValence bond theoryW stateQuantum Physics (quant-ph)Hamiltonian (quantum mechanics)QuantumOther Condensed Matter (cond-mat.other)description
We propose a method for controllable generation of non-local entangled pairs using spinor atoms loaded in an optical superlattice. Our scheme iteratively increases the distance between entangled atoms by controlling the coupling between the double wells. When implemented in a finite linear chain of 2N atoms, it creates a triplet valence bond state with large persistency of entanglement (of the order of N). We also study the non-equilibrium dynamics of the one-dimensional ferromagnetic Heisenberg Hamiltonian and show that the time evolution of a state of decoupled triplets on each double well leads to the formation of a highly entangled state where short-distance antiferromagnetic correlations coexist with longer-distance ferromagnetic ones. We present methods for detection and characterization of the various dynamically generated states. These ideas are a step forward towards the use of atoms trapped by light as quantum information processors and quantum simulators.
year | journal | country | edition | language |
---|---|---|---|---|
2008-03-11 | Physical Review A |