0000000001131633

AUTHOR

Peter Barmettler

showing 1 related works from this author

Quantum many-body dynamics of coupled double-well superlattices

2008

We propose a method for controllable generation of non-local entangled pairs using spinor atoms loaded in an optical superlattice. Our scheme iteratively increases the distance between entangled atoms by controlling the coupling between the double wells. When implemented in a finite linear chain of 2N atoms, it creates a triplet valence bond state with large persistency of entanglement (of the order of N). We also study the non-equilibrium dynamics of the one-dimensional ferromagnetic Heisenberg Hamiltonian and show that the time evolution of a state of decoupled triplets on each double well leads to the formation of a highly entangled state where short-distance antiferromagnetic correlatio…

Condensed Matter::Quantum GasesPhysicsQuantum PhysicsStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsSuperlatticeTime evolutionFOS: Physical sciencesQuantum simulatorQuantum entanglementAtomic and Molecular Physics and OpticsCondensed Matter - Other Condensed MatterCondensed Matter - Strongly Correlated Electronssymbols.namesakeQuantum mechanicssymbolsValence bond theoryW stateQuantum Physics (quant-ph)Hamiltonian (quantum mechanics)QuantumOther Condensed Matter (cond-mat.other)Physical Review A
researchProduct