6533b7dbfe1ef96bd1270a8e
RESEARCH PRODUCT
Counting atoms using interaction blockade in an optical superlattice.
Simon FöllingImmanuel BlochM. FeldM. FeldStefan TrotzkyU. SchnorrbergerM. Moreno-cardonerPatrick Cheinetsubject
Condensed Matter::Quantum GasesPhysicsOptical latticeMesoscopic physicseducation.field_of_studyCondensed Matter::OtherSuperlatticePopulationFOS: Physical sciencesGeneral Physics and AstronomyCoulomb blockadeCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter - Other Condensed MatterTunnel effectUltracold atomLattice (order)Atomic physicseducationOther Condensed Matter (cond-mat.other)description
We report on the observation of an interaction blockade effect for ultracold atoms in optical lattices, analogous to Coulomb blockade observed in mesoscopic solid state systems. When the lattice sites are converted into biased double wells, we detect a discrete set of steps in the well population for increasing bias potentials. These correspond to tunneling resonances where the atom number on each side of the barrier changes one by one. This allows us to count and control the number of atoms within a given well. By evaluating the amplitude of the different plateaus, we can fully determine the number distribution of the atoms in the lattice, which we demonstrate for the case of a superfluid and Mott insulating regime of 87Rb.
year | journal | country | edition | language |
---|---|---|---|---|
2008-04-21 | Physical review letters |