0000000000004277

AUTHOR

M. Moreno-cardoner

showing 2 related works from this author

Counting atoms using interaction blockade in an optical superlattice.

2008

We report on the observation of an interaction blockade effect for ultracold atoms in optical lattices, analogous to Coulomb blockade observed in mesoscopic solid state systems. When the lattice sites are converted into biased double wells, we detect a discrete set of steps in the well population for increasing bias potentials. These correspond to tunneling resonances where the atom number on each side of the barrier changes one by one. This allows us to count and control the number of atoms within a given well. By evaluating the amplitude of the different plateaus, we can fully determine the number distribution of the atoms in the lattice, which we demonstrate for the case of a superfluid …

Condensed Matter::Quantum GasesPhysicsOptical latticeMesoscopic physicseducation.field_of_studyCondensed Matter::OtherSuperlatticePopulationFOS: Physical sciencesGeneral Physics and AstronomyCoulomb blockadeCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter - Other Condensed MatterTunnel effectUltracold atomLattice (order)Atomic physicseducationOther Condensed Matter (cond-mat.other)Physical review letters
researchProduct

Anomalous Expansion of Attractively Interacting Fermionic Atoms in an Optical Lattice

2010

Strong correlations can dramatically modify the thermodynamics of a quantum many-particle system. Especially intriguing behaviour can appear when the system adiabatically enters a strongly correlated regime, for the interplay between entropy and strong interactions can lead to counterintuitive effects. A well known example is the so-called Pomeranchuk effect, occurring when liquid 3He is adiabatically compressed towards its crystalline phase. Here, we report on a novel anomalous, isentropic effect in a spin mixture of attractively interacting fermionic atoms in an optical lattice. As we adiabatically increase the attraction between the atoms we observe that the gas, instead of contracting, …

Condensed Matter::Quantum GasesPhysicsOptical latticeMultidisciplinaryCondensed matter physicsHubbard modelIsentropic processStrongly Correlated Electrons (cond-mat.str-el)High Energy Physics::LatticeFOS: Physical sciencesBose–Hubbard modelCondensed Matter - Strongly Correlated ElectronsQuantum Gases (cond-mat.quant-gas)Quantum mechanicsLattice (order)Condensed Matter - Quantum GasesQuantum
researchProduct