6533b872fe1ef96bd12d312a

RESEARCH PRODUCT

Probing number squeezing of ultracold atoms across the superfluid-Mott insulator transition.

Artur WideraSimon FöllingFabrice GerbierImmanuel BlochOlaf Mandel

subject

Condensed Matter::Quantum GasesPhysicsCondensed matter physicsFilling factorMott insulatorFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciences010305 fluids & plasmaslaw.inventionCondensed Matter - Other Condensed MatterSuperfluiditylawUltracold atom[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]0103 physical sciencesAtomCondensed Matter::Strongly Correlated ElectronsAtomic number010306 general physicsBose–Einstein condensateOther Condensed Matter (cond-mat.other)Spin-½

description

The evolution of on-site number fluctuations of ultracold atoms in optical lattices is experimentally investigated by monitoring the suppression of spin-changing collisions across the superfluid-Mott insulator transition. For low atom numbers, corresponding to an average filling factor close to unity, large on-site number fluctuations are necessary for spin-changing collisions to occur. The continuous suppression of spin-changing collisions is thus a direct evidence for the emergence of number-squeezed states. In the Mott insulator regime, we find that spin-changing collisions are suppressed until a threshold atom number, consistent with the number where a Mott plateau with doubly-occupied sites is expected to form.

10.1103/physrevlett.96.090401https://pubmed.ncbi.nlm.nih.gov/16606244