Search results for " bat"

showing 10 items of 545 documents

Toward Tin-Based High-Capacity Anode for Lithium-Ion Battery

2014

Electrochemical deposition of SnCo alloys inside the nanometric pores of commercial membranes is described. Composition, morphology and crystallographic structure of the synthesized nanostructured alloys are reported as well as the results of electrochemical tests carried out both in half-cell and in full battery configuration to investigate the performance of these SnCo alloys as anodes for lithium-ion batteries. Optimized depositions yielded nanostructured alloys that performed 200 deep galvanostatic cycles at C/2 and 30 °C with 80 % capacity retention and coulombic efficiency higher than 97 % after 40 cycles Moreover, charge-discharge rate capability tests showed the high performance of …

Battery (electricity)SnCo alloyMaterials sciencechemistry.chemical_elementHigh capacitylithium-ion batteryTin-based anodeLithium-ion batteryAnodeSettore ING-IND/23 - Chimica Fisica ApplicataChemical engineeringchemistryTin Tin-cobalt alloy Nanowires Anode Li-ion batteriesTinECS Transactions
researchProduct

Battery technologies for electric vehicles

2017

This chapter gives a brief overview of the following types of vehicles: battery electric vehicle (BEV), plug-in hybrid electric vehicle (PHEV), and hybrid electric vehicle (HEV). It then provides a comprehensive summary of the electrochemical energy storage including Ni-MH battery, Li-ion battery, and advanced rechargeable battery. Battery chemistry is explained in a detailed manner including an abbreviated modelling approach. Also, the issues of battery-charging method, management, and monitoring are addressed. The chapter concludes with a discussion on battery cell voltage balancing and temperature monitoring in addition to the battery state-of-charge (SOC) estimation.

Battery (electricity)Temperature monitoringbusiness.product_categoryBattery cellbusiness.industryComputer scienceElectrical engineering02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesHardware_GENERALElectric vehicleBattery electric vehicleComputerSystemsOrganization_SPECIAL-PURPOSEANDAPPLICATION-BASEDSYSTEMSAutomotive battery0210 nano-technologybusinessElectrochemical energy storageVoltage
researchProduct

Modeling and experimenting the thermal behavior of a lithium-ion battery on a electric vehicle

2018

This paper deals with an electro thermal model of a lithium-ion battery for hybrid and electric vehicles. It was developed to study the behavior of lithium-ion battery key parameters. The thermal model, under Matlab/Simulink, is capable of predicting the voltage, current, State of Charge and temperature of the battery. Thereafter, the thermal behavior of the battery was studied under different operating conditions. The results of the simulation were compared with experimental measurements carried out by thermocouples and thermal camera on a test bench. Finally, the model has been validated on the NOAO electric vehicle.

Battery (electricity)Test benchMaterials sciencebusiness.product_categoryAutomotive engineeringLithium-ion battery[SPI]Engineering Sciences [physics]State of chargeThermocoupleThermalElectric vehiclebusinessComputingMilieux_MISCELLANEOUSVoltage
researchProduct

On the regeneration of thermally regenerative ammonia batteries

2018

In the past few years, thermally regenerative ammonia battery (TRAB) has been proposed as an effective tool to recover waste heat at temperatures below 130 °C. Most of the literature available is devoted to the power production step, with less attention being given to the regeneration step (e.g. the removal of ammonia from the anolyte). In this paper, the TRAB is analyzed with particular attention to the regeneration step and to the study of various generation of energy-regeneration cycles. It was shown that approximately 90 °C is necessary for the regeneration step due to the fact that ammonia is present in the anolyte mainly as a complex. Various cycles were performed with success, demons…

Battery (electricity)Thermally regenerative ammonia battery TRAB TREC Regeneration Waste heat Ammonia–copper complexMaterials scienceWaste managementGeneral Chemical Engineering02 engineering and technologySettore ING-IND/27 - Chimica Industriale E Tecnologica010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciences0104 chemical sciencesAmmoniachemistry.chemical_compoundchemistryWaste heatMaterials ChemistryElectrochemistry0210 nano-technologyRegeneration (ecology)Journal of Applied Electrochemistry
researchProduct

Development of a membrane-less microfluidic thermally regenerative ammonia battery

2021

Thermally regenerative ammonia battery is a promising approach to make use of waste heat and generate electrical energy. However, according to literature, the price of the energy obtained by this device is much higher than alternative renewable technologies (such as wind, solar, geothermal, etc.). To make the process more viable for applicative purposes, it would be necessary to reduce dramatically the cost of the membrane or to avoid it. Hence, the aim of the present work is to increase the economic figures of thermally regenerative ammonia battery avoiding the use of membranes. It was concluded that this result can be obtained by developing the process in a microfluidic flow cell with lam…

Battery (electricity)Work (thermodynamics)Materials science020209 energyMicrofluidics02 engineering and technology7. Clean energyIndustrial and Manufacturing Engineering020401 chemical engineeringWaste heat0202 electrical engineering electronic engineering information engineering0204 chemical engineeringElectrical and Electronic EngineeringProcess engineeringCivil and Structural EngineeringPower densitybusiness.industryMechanical EngineeringBuilding and ConstructionThermally regenerative ammonia battery Microfluidic Membrane-less Membrane-less TRABSettore ING-IND/27 - Chimica Industriale E TecnologicaPollutionVolumetric flow rateGeneral EnergyMembraneElectrodebusiness
researchProduct

Determining noise and vibration exposure in conifer cross-cutting operations by using Li-Ion batteries and electric chainsaws

2018

In many activities, chainsaw users are exposed to the risk of injuries and several other hazard factors that may cause health problems. In fact, environmental and working conditions when using chainsaws result in workers&rsquo

Battery (electricity)batteriesBatteries Chainsaw Forest operation Health and safety Professional disease Vibrations white fingerforest operation; professional disease; health and safety; vibrations white finger; chainsaw; batteriesAutomotive engineering03 medical and health sciencesHealth problems0302 clinical medicinehealth and safetyContinuous exposurechainsawSettore AGR/06 - Tecnologia Del Legno E Utilizzazioni ForestaliForestryforest operationvibrations white finger04 agricultural and veterinary scienceslcsh:QK900-989030210 environmental & occupational healthNoiseCross-cuttingprofessional disease040103 agronomy & agriculturelcsh:Plant ecology0401 agriculture forestry and fisheriesEnvironmental scienceVibration exposure
researchProduct

A Bidirectional IPT system for Electrical Bicycle Contactless Energy Transfer

2019

Contactless Energy Transfer characterized by Inductive Power Transfer (IPT) is a viable solution for Electric Vehicle (EV) battery charging, giving advantages in terms of safety, comfort and automatism of the recharging operation. IPT is a smart option for the Vehicle- To-Grid (V2G) implementation as well: the EV's battery can provide power to other users, if possible and if required, in order to adequately respond to an active demand scenario. IPT shall therefore allow a Bidirectional power flow, so that it can be properly defined as Bidirectional IPT (BIPT). In this paper, a 300 W BIPT system for E-bikes is proposed and experimental results are shown as well. Considering power level and s…

Battery (electricity)business.product_categoryComputer science020209 energyEnergy transferVehicle-to-grid010103 numerical & computational mathematics02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciSettore ING-INF/01 - Elettronica01 natural sciencesPower levelElectric bicycleElectric vehicle0202 electrical engineering electronic engineering information engineeringMaximum power transfer theorem0101 mathematicsWireless battery chargingContactless energy transferbusiness.industryElectrical engineeringVehicle-to-gridInductive power transferPower (physics)Power flowbusiness2019 8th International Conference on Renewable Energy Research and Applications (ICRERA)
researchProduct

Control subsystem design for wireless power transfer

2014

Recently, the wireless power transfer has been increasingly employed. Particularly for the electric vehicles, the wireless solution is attractive for contactless battery charging, based on the Inductive Power Transfer (IPT). In this paper, a 150W prototype for IPT-based battery charging is presented and design criteria are reported. In addition to the power stage analysis, a proper control strategy is proposed. Simulation and experimental results are shown. The proposed control method aims at regulating the load current against variations in the magnetic coupling, so that the required amount of power can be supplied despite of unexpected decreases in the coupling efficiency.

Battery (electricity)control subsystem designEngineeringControl (management)IPT-based battery chargingWireless communicationwireless power transfermagnetic couplingCoilSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciSettore ING-INF/01 - ElettronicaBatterieReceiverCouplingcontactless battery charginginductive power transmissioncontrol system synthesiWirelessMaximum power transfer theoremWireless power transferinductive power transferInductancepower stage analysiecondary cellbusiness.industryElectrical engineeringTransmittercoupling efficiencyInductive couplingPower (physics)power flow controlInductancebusinessload current regulation
researchProduct

Power Grid Integration and Use-Case Study of Acid-Base Flow Battery Technology

2021

There are many different types of energy storage systems (ESS) available and the functionality that they can provide is extensive. However, each of these solutions come with their own set of drawbacks. The acid-base flow battery (ABFB) technology aims to provide a route to a cheap, clean and safe ESS by means of providing a new kind of energy storage technology based on reversible dissociation of water via bipolar electrodialysis. First, the main characteristics of the ABFB technology are described briefly to highlight its main advantages and drawbacks and define the most-competitive use-case scenarios in which the technology could be applied, as well as analyze the particular characteristi…

Battery (electricity)distributed energy resourcepower grid integrationProcess (engineering)Computer science020209 energyInterface (computing)Energy storage systempower flow batteriesGeography Planning and Developmentpower convertersTJ807-83002 engineering and technologyManagement Monitoring Policy and LawTD194-1957. Clean energyEnergy storageRenewable energy sourceslaw.inventionacid-base flow batterydistributed energy resourcesSet (abstract data type)law0202 electrical engineering electronic engineering information engineeringpower converterGE1-350Environmental effects of industries and plantsRenewable Energy Sustainability and the Environmentpower flow batterie021001 nanoscience & nanotechnologyFlow batteryPower (physics)Reliability engineeringEnvironmental sciencesElectrical networkenergy storage systems0210 nano-technologySustainability
researchProduct

Experimental test on a Contactless Power Transfer system

2014

Contactless Power Transfer (CPT) is an ever-growing technology in automotive market, due to the significant improvement brought by it to battery charging operation in terms of safety and comfort. CPT is based on inductive coupling between two coils, so that power cords can be avoided for vehicles battery charging and an important contribution towards a smarter mobility can arise. In this paper, a CPT prototype for E-bike is proposed. Magnetic design and power electronics system are described. Experimental results deriving from laboratory tests are presented and power efficiency of the system is addressed.

Battery (electricity)vehicular technologieEngineeringbusiness.industryElectrical engineeringcontactless power transferSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciInductive couplingPower (physics)Power electronicsPower modulewireless battery chargingMaximum power transfer theoreminductive power transferAutomotive marketbusinessElectrical efficiency2014 Ninth International Conference on Ecological Vehicles and Renewable Energies (EVER)
researchProduct