Search results for " bonding"

showing 10 items of 934 documents

Free-energy studies reveal a possible mechanism for oxidation-dependent inhibition of MGL

2016

AbstractThe function of monoacylglycerol lipase (MGL), a key actor in the hydrolytic deactivation of the endocannabinoid 2-arachidonoyl-sn-glycerol (2AG), is tightly controlled by the cell’s redox state: oxidative signals such as hydrogen peroxide suppress MGL activity in a reversible manner through sulfenylation of the peroxidatic cysteines, C201 and C208. Here, using as a starting point the crystal structures of human MGL (hMGL), we present evidence from molecular dynamics and metadynamics simulations along with high-resolution mass spectrometry studies indicating that sulfenylation of C201 and C208 alters the conformational equilibrium of the membrane-associated lid domain of MGL to favo…

0301 basic medicineOxidative phosphorylationMolecular Dynamics SimulationRedoxArticle03 medical and health scienceschemistry.chemical_compoundCatalytic DomainHumansCysteineHydrogen peroxideMultidisciplinary030102 biochemistry & molecular biologybiologyHydrogen bondMetadynamicsActive siteSubstrate (chemistry)Hydrogen BondingHydrogen PeroxideMonoacylglycerol LipasesMonoacylglycerol lipase030104 developmental biologyBiochemistrychemistrybiology.proteinBiophysicsThermodynamicsOxidation-ReductionProtein Processing Post-TranslationalProtein BindingScientific Reports
researchProduct

Insights into the inhibited form of the redox-sensitive SufE-like sulfur acceptor CsdE

2017

17 p.-8 fig.

0301 basic medicineProtein ConformationDimerlcsh:MedicineMolecular DynamicsCrystallography X-RayPhysical ChemistryBiochemistryDEAD-box RNA HelicasesMolecular dynamicschemistry.chemical_compoundComputational ChemistryNucleophileBiochemical Simulationslcsh:ScienceMultidisciplinaryCrystallographyChemistryOrganic CompoundsPhysicsEscherichia coli ProteinsCondensed Matter Physics3. Good healthPhysical sciencesChemistryCarbon-Sulfur LyasesBiochemistryCrystal StructureResearch ArticleChemical ElementsProtein subunitChemical physicschemistry.chemical_elementOxidative phosphorylationMolecular Dynamics Simulation03 medical and health sciencesThiolsEscherichia coliSolid State PhysicsProtein Interaction Domains and MotifsChemical BondingOrganic Chemistrylcsh:RChemical CompoundsBiology and Life SciencesComputational BiologyDimers (Chemical physics)Hydrogen BondingCell BiologySulfurAcceptorRedox sensitiveOxidative Stress030104 developmental biologyBiophysicslcsh:QProtein MultimerizationSulfur
researchProduct

Evaluating the stability of pharmacophore features using molecular dynamics simulations.

2016

Abstract Molecular dynamics simulations of twelve protein—ligand systems were used to derive a single, structure based pharmacophore model for each system. These merged models combine the information from the initial experimental structure and from all snapshots saved during the simulation. We compared the merged pharmacophore models with the corresponding PDB pharmacophore models, i.e., the static models generated from an experimental structure in the usual manner. The frequency of individual features, of feature types and the occurrence of features not present in the static model derived from the experimental structure were analyzed. We observed both pharmacophore features not visible in …

0301 basic medicineProtein FlexibilityProtein ConformationBiophysicsStability (learning theory)Molecular Dynamics SimulationLigands01 natural sciencesBiochemistryLigandScoutSet (abstract data type)03 medical and health sciencesMolecular dynamicsComputational chemistryFeature (machine learning)Pharmacophore ModelingSensitivity (control systems)Molecular BiologyBinding Sites010405 organic chemistryChemistryStructure-based Pharmacophore ModelingMolecular DynamicProteinsHydrogen BondingCell Biology0104 chemical sciences030104 developmental biologyRankingModels ChemicalDrug DesignPharmacophoreBiological systemProtein BindingBiochemical and biophysical research communications
researchProduct

Thiazole–amino acids: influence of thiazole ring on conformational properties of amino acid residues

2021

Abstract Post-translational modified thiazole–amino acid (Xaa–Tzl) residues have been found in macrocyclic peptides (e.g., thiopeptides and cyanobactins), which mostly inhibit protein synthesis in Gram + bacteria. Conformational study of the series of model compounds containing this structural motif with alanine, dehydroalanine, dehydrobutyrine and dehydrophenylalanine were performed using DFT method in various environments. The solid-state crystal structure conformations of thiazole–amino acid residues retrieved from the Cambridge Structural Database were also analysed. The studied structural units tend to adopt the unique semi-extended β2 conformation; which is stabilised mainly by N–H⋯N…

0301 basic medicineStereochemistryClinical BiochemistryNon-standard amino acidsMolecular ConformationRamachandran map010402 general chemistryRing (chemistry)01 natural sciencesBiochemistryDFT03 medical and health scienceschemistry.chemical_compoundDehydroalanineAmino AcidsStructural motifThiazoleOxazoleAlaninechemistry.chemical_classificationHydrogen bondNon-standard amino AIDSHydrogen bondOrganic ChemistryHydrogen Bonding0104 chemical sciencesAmino acidThiazoles030104 developmental biologyConformational analysischemistryOriginal ArticleThiazolePeptidesAmino Acids
researchProduct

Closed-Locked and Apo-Resting State Structures of the Human α7 Nicotinic Receptor: A Computational Study

2018

International audience; Nicotinic acetylcholine receptors, belonging to the Cys-loop super-family of ligand-gated ion channels (LGICs), are membrane proteins present in neurons and at neuromuscular junctions. They are responsible for signal transmission, and their function is regulated by neurotransmitters, agonists and antagonists drugs. A detailed knowledge of their conformational transition in response to ligand binding is critical to understand the basis of ligand-receptor interaction, in view of new pharmacological approaches to control receptor activity. However, the scarcity of experimentally derived structures of human channels makes this perspective extremely challenging. To contri…

0301 basic medicinealpha7 Nicotinic Acetylcholine ReceptorProtein ConformationGeneral Chemical EngineeringMolecular Dynamics SimulationLibrary and Information Sciences03 medical and health sciencesMolecular dynamics0302 clinical medicineHumansHomology modelingReceptorIon channelAcetylcholine receptor[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry Molecular Biology/Structural Biology [q-bio.BM]Protein StabilityChemistryWaterHydrogen BondingGeneral ChemistryLigand (biochemistry)molecular dynamicsComputer Science Applications[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry Molecular Biology/BiophysicsTransmembrane domain030104 developmental biologyNicotinic agonistBiophysics[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM]Conotoxinsligand gated ion channel030217 neurology & neurosurgery
researchProduct

A possible desensitized state conformation of the human α7 nicotinic receptor: A molecular dynamics study

2017

International audience; The determination of the conformational states corresponding to diverse functional roles of ligand gated ion channels is subject of intense investigation with various techniques, from X-rays structure determination to electrophysiology and computational modeling. Even with a certain number of structures becoming recently available, only few major structural features distinguishing conductive open channel from the non conductive resting protein have been highlighted, while high-resolution details are still missing. The characterization of the desensitized conformation(s) is even more complex, and only few specific characteristics have been identified. Furthermore, exp…

0301 basic medicinealpha7 Nicotinic Acetylcholine ReceptorStereochemistryPyridinesBiophysicsMolecular Dynamics SimulationBiochemistry03 medical and health sciencesMolecular dynamicsmedicineHumansHomology modelingnicotinic receptor epibatidine molecular dynamics inactive stateIon channel[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry Molecular Biology/Structural Biology [q-bio.BM]ChemistryProtein StabilityOrganic ChemistryHydrogen BondingBridged Bicyclo Compounds HeterocyclicSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Protein Structure Tertiary[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry Molecular Biology/BiophysicsElectrophysiology030104 developmental biologyNicotinic agonistα7 nicotinic receptorEpibatidineLigand-gated ion channel[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM]medicine.drug
researchProduct

Hydrogen Bond Fluctuations Control Photochromism in a Reversibly Photo-Switchable Fluorescent Protein

2015

Reversibly switchable fluorescent proteins (RSFPs) are essential for high-resolution microscopy of biological samples, but the reason why these proteins are photochromic is still poorly understood. To address this problem, we performed molecular dynamics simulations of the fast switching Met159Thr mutant of the RSFP Dronpa. Our simulations revealed a ground state structural heterogeneity in the chromophore pocket that consists of three populations with one, two, or three hydrogen bonds to the phenolate moiety of the chromophore. By means of non-adiabatic quantum mechanics/molecular dynamics simulations, we demonstrated that the subpopulation with a single hydrogen bond is responsible for of…

0301 basic medicinefluorescent proteinsMolecular Dynamics Simulation010402 general chemistryPhotochemistry01 natural sciencesCatalysis03 medical and health sciencesDronpaMolecular dynamicsPhotochromismIsomerismta116structural heterogeneityHydrogen bondChemistryRational designHydrogen BondingGeneral MedicineGeneral ChemistryChromophorePhotochemical Processeslaskennallinen kemiaphotochromismcomputational chemistryFluorescence0104 chemical sciencesLuminescent Proteins030104 developmental biologyQuantum Theoryphoto-isomerizationIsomerizationAngewandte Chemie International Edition
researchProduct

All bonds are not the same: A response surface analysis of the perceptions of positive bonding relationships in therapy groups

2017

Intrapersonal split alliances were defined as discrepancies in how group members perceived their positive bonding relationships with the group leader, the other group members, and the group-as-a-whole, and were related to group members' outcome. Participants were 168 patients (116 women and 52 men) diagnosed as overweight or obese who participated in 1 of 20, 12-session, therapy groups for weight management. Group members completed the Outcome Questionnaire-45 (OQ-45, Lambert et al., 2004) pre- and posttreatment and the Group Questionnaire (GQ, Krogel et al., 2013) at early, middle and late group sessions. Early, middle, and late ratings were aggregated because bond scores were consistent a…

050103 clinical psychologyPsychotherapistPositive bondingSocial Psychologymedia_common.quotation_subjectmedicine.medical_treatment05 social sciencesTreatment outcomeWeight controlGroup Questionnaire; Group therapy; Obesity; Positive bonding; Response surface analysis; Social Psychology; Applied PsychologyGroup therapyGroup psychotherapy050106 general psychology & cognitive sciencesResponse surface analysiResponse surface analysisPerceptionSettore M-PSI/08 - Psicologia ClinicamedicineGroup Questionnaire0501 psychology and cognitive sciencesObesityPsychologyApplied Psychologymedia_commonClinical psychology
researchProduct

Superfluorinated ionic liquid crystals based on supramolecular, halogen-bonded anions

2016

Unconventional ionic liquid crystals in which the liquid crystallinity is enabled by halogen-bonded supramolecular anions [CnF2 n+1-I⋯I⋯I-CnF2 n+1]- are reported. The material system is unique in many ways, demonstrating for the first time 1) ionic, halogen-bonded liquid crystals, and 2) imidazolium-based ionic liquid crystals in which the occurrence of liquid crystallinity is not driven by the alkyl chains of the cation. Out of the ordinary: The high directionality of halogen bonds and the fluorophobic effect were exploited in the design and synthesis of a new family of unconventional superfluorinated ionic liquid crystals. The liquid crystallinity of the system is driven by halogen-bonded…

116 Chemical sciencesInorganic chemistry1600Supramolecular chemistryIonic bonding010402 general chemistry01 natural sciencesCatalysissupramolecular chemistryCrystallinitychemistry.chemical_compoundLiquid crystal1503ta116Alkylchemistry.chemical_classificationHalogen bondionic liquid crystal010405 organic chemistryChemistryCommunicationChemistry (all)Self-assemblyGeneral MedicineGeneral Chemistryself-assemblyFluorophobic effect; Halogen bonding; Ionic liquid crystals; Self-assembly; Supramolecular chemistry; Chemistry (all); CatalysisCommunicationsfluorophobic effect0104 chemical sciencesCrystallographyhalogen bondingIonic liquidIonic liquid crystalsSettore CHIM/07 - Fondamenti Chimici Delle TecnologieFluorophobic effectSelf-assemblyHalogen bondingionic liquid crystalsSupramolecular chemistry
researchProduct

Synthesis, characterization, and cytotoxic activity of copper(II) and platinum(II) complexes of 2-benzoylpyrrole and X-ray structure of bis[2-benzoyl…

2004

Copper(II) and platinum(II) complexes of 2-benzoylpyrrole (2-BZPH) were synthesized and characterized with IR, 1 H and 1 3 C NMR spectroscopies and coordination geometry with ligands arranged in transoid fashion. The crystal structure of [Cu I I (2-BZP) 2 ] was determined by X-ray diffraction. Death of complex treated Jurkat cells was measured by flow cytometry. The bis-chelate complexes [Cu I I (2-BZP) 2 ] and [Pt I I (2-BZP) 2 ] adopt square-planar coordination geometry with ligands, arranged in transoid fashion. Concentrations of 1-10 μM Platinum(II) complexes reduced cell survival from 100% to 20%, in contrast to the copper(II) complex which caused no cell death at a concentration of 10…

2-BenzoylpyrroleCopper(II) and platinum(II) complexesCytotoxicityMagnetic Resonance SpectroscopySpectrophotometry InfraredCell SurvivalMolecular Conformationchemistry.chemical_elementAntineoplastic AgentsCrystal structureCrystallography X-RayLigandsBiochemistryJurkat cellsInorganic ChemistryJurkat CellsOrganometallic CompoundsHumansPyrrolesCytotoxicityCoordination geometryPlatinumFormazansCell DeathDose-Response Relationship DrugMolecular StructureX-rayHydrogen Bonding2-benzoylpyrrole; copper(ii) and platinum(ii) complexes; cytotoxicityCarbon-13 NMRFlow CytometryCopperCrystallographycopper(ii) and platinum(ii) complexeschemistryxray cristallogrphycytotoxicityIndicators and ReagentsPlatinumCopper2-benzoylpyrroleJournal of inorganic biochemistry
researchProduct