Search results for " clusters"

showing 10 items of 1091 documents

Multiply charged metal cluster anions

2000

Formation, stability patterns, and decay channels of silver dianionic and gold trianionic clusters are investigated with Penning-trap experiments and a shell-correction method including shape deformations. The theoretical predictions pertaining to the appearance sizes and electronic shell effects are in remarkable agreement with the experiments. Decay of the multiply anionic clusters occurs predominantly by electron tunneling through a Coulomb barrier, rather than via fission, leading to appearance sizes unrelated to those of multiply cationic clusters.

Condensed Matter - Materials ScienceMaterials scienceNuclear TheoryFissionShell (structure)Cationic polymerizationGeneral Physics and AstronomyCoulomb barrierMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesElectron530MetalNuclear Theory (nucl-th)Chemical physicsvisual_artvisual_art.visual_art_mediumCluster (physics)Physics::Atomic and Molecular ClustersPhysics - Atomic and Molecular ClustersAtomic physicsAtomic and Molecular Clusters (physics.atm-clus)Quantum tunnelling
researchProduct

Quantum Well States in Two-Dimensional Gold Clusters on MgO Thin Films

2008

The electronic structure of ultra-small Au clusters on thin MgO/Ag(001) films has been analyzed by scanning tunneling spectroscopy and density functional theory. The clusters exhibit two-dimensional (2D) quantum well states, whose shapes resemble the eigen-states of a 2D electron gas confined in a parabolic potential. From the symmetries of the HOMO and LUMO of a particular cluster, its electron filling and charge state is determined. In accordance to a DFT Bader-charge analysis, aggregates containing up to twenty atoms accumulate one to four extra electrons due to a charge transfer from the MgO/Ag interface. The HOMO - LUMO gap is found to close for clusters containing between 70 and 100 a…

Condensed Matter - Materials ScienceMaterials scienceScanning tunneling spectroscopyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyElectronic structureElectronlaw.inventionQuantum dotlawPhysics::Atomic and Molecular ClustersCluster (physics)Density functional theoryAtomic physicsScanning tunneling microscopeHOMO/LUMOPhysical Review Letters
researchProduct

Ab initio DFT+U study of He atom incorporation into UO(2) crystals.

2009

We present and discuss results of a density functional theory (DFT) study of a perfect UO2 crystals and He atoms in octahedral interstitial positions. We have calculated basic bulk crystal properties and He incorporation energies into the low temperature anti-ferromagnetic UO2 phase using several exchange-correlation functionals within the spin-polarized local density (LDA) and generalized gradient (GGA) approximations. In all these DFT calculations we included the on-site correlation corrections using the Hubbard model (DFT+U approach). We analysed a potential crystalline symmetry reduction and confirmed the presence of the Jahn-Teller effect in a perfect UO2. We discuss also the problem o…

Condensed Matter - Materials ScienceMaterials scienceSpin polarizationHubbard modelAb initioMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyMolecular physicsCondensed Matter::Materials ScienceTetragonal crystal systemAtomPhysics::Atomic and Molecular ClustersSupercell (crystal)AntiferromagnetismCondensed Matter::Strongly Correlated ElectronsDensity functional theoryPhysical and Theoretical ChemistryPhysical chemistry chemical physics : PCCP
researchProduct

Nonmagnetic and magnetic thiolate-protected Au25superatoms on Cu(111), Ag(111), and Au(111) surfaces

2012

Geometry, electronic structure, and magnetic properties of methylthiolate-stabilized Au$_{25}$L$_{18}$ and MnAu$_{24}$L$_{18}$ (L = SCH$_3$) clusters adsorbed on noble-metal (111) surfaces have been investigated by using spin-polarized density functional theory computations. The interaction between the cluster and the surface is found to be mediated by charge transfer mainly from or into the ligand monolayer. The electronic properties of the 13-atom metal core remain in all cases rather undisturbed as compared to the isolated clusters in gas phase. The Au$_{25}$L$_{18}$ cluster retains a clear HOMO - LUMO energy gap in the range of 0.7 eV to 1.0 eV depending on the surface. The ligand layer…

Condensed Matter - Materials ScienceMaterials scienceta114Condensed Matter - Mesoscale and Nanoscale PhysicsMagnetic momentBand gapMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesElectronic structureCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCrystallographyMesoscale and Nanoscale Physics (cond-mat.mes-hall)Cluster (physics)Density functional theoryPhysics - Atomic and Molecular ClustersAtomic physicsAtomic and Molecular Clusters (physics.atm-clus)Spin (physics)HOMO/LUMOEnergy (signal processing)Physical Review B
researchProduct

Probing phonon dynamics with multidimensional high harmonic carrier-envelope-phase spectroscopy

2022

We explore pump-probe high harmonic generation (HHG) from monolayer hexagonal-Boron-Nitride, where a terahertz pump excites coherent optical phonons that are subsequently probed by an intense infrared pulse that drives HHG. We find, through state-of-the-art ab-initio calculations, that the structure of the emission spectrum is attenuated by the presence of coherent phonons, and is no longer comprised of discrete harmonic orders, but rather of a continuous emission in the plateau region. The HHG yield strongly oscillates as a function of the pump-probe delay, corresponding to ultrafast changes in the lattice such as bond compression or stretching. We further show that in the regime where the…

Condensed Matter - Materials ScienceMultidisciplinarynonlinear opticsphononsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesPhysics::OpticsElectron-phonon couplingSettore FIS/03 - Fisica Della Materiaultrafast spectroscopypump-robe spectroscopyPhysics::Atomic and Molecular ClustersHHGOptics (physics.optics)Physics - Optics
researchProduct

Ab initio modeling of oxygen impurity atom incorporation into uranium mononitride surface and subsurface vacancies

2011

The incorporation of oxygen atoms has been simulated into either nitrogen or uranium vacancy at the UN(001) surface, sub-surface or central layers. For calculations on the corresponding slab models both the relativistic pseudopotentials and the method of projector augmented-waves (PAW) as implemented in the VASP computer code have been used. The energies of O atom incorporation and solution within the defective UN surface have been calculated and discussed. For different configurations of oxygen ions at vacancies within the UN(001) slab, the calculated density of states and electronic charge re-distribution was analyzed. Considerable energetic preference of O atom incorporation into the N-v…

Condensed Matter - Materials ScienceNuclear and High Energy PhysicsChemistryAb initiochemistry.chemical_elementMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesUraniumComputational Physics (physics.comp-ph)Elementary chargeNitrogenCondensed Matter::Materials ScienceNuclear Energy and EngineeringVacancy defectAtomDensity of statesSlabPhysics::Atomic and Molecular ClustersGeneral Materials ScienceAtomic physicsPhysics - Computational Physics
researchProduct

In Situ Study of Zinc Peroxide Decomposition to Zinc Oxide by X‐Ray Absorption Spectroscopy and Reverse Monte Carlo Simulations

2022

The authors wish to thank Dr. R. Kalendarev for the synthesis of ZnO2 sample. A.K. would like to thank the financial support of the ERDF Project No. 1.1.1.1/20/A/060. The experiment at the MAX IV synchrotron was performed within the project 20190823. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2.

Condensed Matter - Materials Sciencereverse Monte Carlo methodX-ray absorption spectroscopyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences:NATURAL SCIENCES::Physics [Research Subject Categories]Condensed Matter PhysicsElectronic Optical and Magnetic MaterialsEXAFSCondensed Matter::Materials Sciencephase transitionZnOPhysics::Atomic and Molecular ClustersZnO2physica status solidi (b)
researchProduct

Comment on "Critique of the foundations of time-dependent density functional theory" [Phys. Rev.A. 75, 022513 (2007)]

2007

A recent paper (Phys. Rev A. 75, 022513 (2007), arXiv:cond-mat/0602020) challenges exact time-dependent density functional theory (TDDFT) on several grounds. We explain why these criticisms are either irrelevant or incorrect, and that TDDFT is both formally exact and predictive.

Condensed Matter - Other Condensed MatterPhysics::Atomic and Molecular ClustersFOS: Physical sciencesOther Condensed Matter (cond-mat.other)
researchProduct

Metal Cluster — Surface Interaction: Simple Models and Ab Initio Calculations

1999

We review recent ab initio atomistic calculations on interactions between metal clusters and electronically inert (insulating) substrates. The model system is sodium clusters on the sodium-chloride (001) surface. This system provides an example of weak cluster-support interaction (physisorption) which can however be easily modified by introducing color centers at the surface, resulting in chemisorption of sodium adatom or cluster. The results obtained from atomistic calculations can be used for constructing simple jellium-type models for the adsorbed cluster. These models allow for systematic investigations in a large size-range of clusters on the shell structure, dimensionality, and stabil…

Condensed Matter::Materials ScienceAdsorptionMaterials sciencePhysisorptionChemical physicsChemisorptionComputational chemistryAb initio quantum chemistry methodsPhysics::Atomic and Molecular ClustersAb initioCluster (physics)SIESTA (computer program)Valence electron
researchProduct

Modification of the charge and magnetic order of a low dimensional ferromagnet by molecule-surface bonding

2020

The ability to design and control the spin and charge order of low dimensional materials on the molecular scale offers an intriguing pathway towards the miniaturization of spintronic technology towards the nanometer scale. In this work, we focus on the adsorption induced modifications of the magnetic and electronic properties of a low dimensional ferromagnetic surface alloy after the adsorption of the prototypical organic molecule perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA). For this metal-organic interface, we observe the formation of a localized $\sigma$-like bond between the functional molecular groups and the surface alloy atoms. This strong chemical bonding coincides with a l…

Condensed Matter::Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Physics::Atomic and Molecular ClustersFOS: Physical sciencesPhysics - Applied PhysicsApplied Physics (physics.app-ph)
researchProduct