Search results for " clusters"
showing 10 items of 1091 documents
UBVRI photometry of NGC 2422
2003
We present UBVRI photometry of the open cluster NGC 2422 (age~10^8^yr) down to a limiting magnitude V=~19. These data are used to derive the Luminosity and Mass Functions and to study the cluster spatial distribution. By considering the color-magnitude diagram data and adopting a representative cluster main sequence, we obtained a list of candidate cluster members based on a photometric criterion. Cone search capability for table J/A+A/404/927/table4 (Astrometric/photometric catalog of candidate members of the open cluster NGC 2422)
Star formation region NGC 6530
2005
We present astrometry and BVI photometry, down to V~22, of the very young open cluster NGC 6530, obtained from observations taken with the Wide Field Imager camera at the MPG/ESO 2.2m Telescope. We have positionally matched our optical catalog with the list of X-ray sources found in a Chandra-ACIS observation, finding a total of 828 common stars, 90% of which are pre-main sequence stars in NGC 6530. Cone search capability for table J/A+A/430/941/table4 (Cross-identifications of this catalog with the previous works of Walker (1957ApJ...125..636W), Kilambi (1977MNRAS.178..423K) and Sung et al. (2000, Cat. )) Cone search capability for table J/A+A/430/941/table5 (Cross-identifications of the o…
Activity and accretion in {gamma} Vel and Cha I
2015
We use the fundamental parameters (effective temperature, surface gravity, lithium abundance, and radial velocity) delivered by the GES consortium in the first internal data release to select the members of Gamma Vel and Cha I among the UVES and GIRAFFE spectroscopic observations. A total of 140 Gamma Vel members and 74 Cha I members were studied. The procedure adopted by the GES to derive stellar fundamental parameters provided also measures of the projected rotational velocity (vsini). We calculated stellar luminosities through spectral energy distributions, while stellar masses were derived by comparison with evolutionary tracks. The spectral subtraction of low-activity and slowly rotati…
VLT/Flames spectroscopic data of NGC 6530
2007
Mechanisms regulating the evolution of pre-main sequence stars can be understood by studying stellar properties such as rotation, disk accretion, internal mixing and binarity. To investigate such properties, we studied a sample of 332 candidate members of the massive and populous star forming region NGC 6530. We want to select cluster members by using different membership criteria, to study the properties of pre-main sequence stars with or without circumstellar disks. We use intermediate resolution spectra including the LiI6707.8{AA} line to derive radial and rotational velocities, binarity and to measure the Equivalent Width of the lithium line; these results are combined with X-ray data t…
The near-IR counterpart of IGR J17480-2446 in Terzan 5
2012
Some globular clusters in our Galaxy are noticeably rich in low-mass X-ray binaries. Terzan 5 has the richest population among globular clusters of X- and radio-pulsars and low-mass X-ray binaries. The detection and study of optical/IR counterparts of low-mass X-ray binaries is fundamental to characterizing both the low-mass donor in the binary system and investigating the mechanisms of the formation and evolution of this class of objects. We aim at identifying the near-IR counterpart of the 11 Hz pulsar IGRJ17480-2446 discovered in Terzan 5. Adaptive optics (AO) systems represent the only possibility for studying the very dense environment of GC cores from the ground. We carried out observ…
Two properties of Müntz spaces
2017
Abstract We show that Müntz spaces, as subspaces of C[0, 1], contain asymptotically isometric copies of c0 and that their dual spaces are octahedral.
Sensitivity and mode spectrum of a frequency-output silicon pressure sensor
1988
The vibrational mode spectrum of a silicon vibrating pressure sensor is investigated. Particular attention is given to the analysis of the vibration shapes, quality factors and relative sensitivity of the resonance frequencies as a function of pressure. It is shown that a pressure sensitivity of a few parts per million at one atmosphere can be achieved. Some comments are also made regarding an improved design of the device.
A study on the fragmentation of sulfuric acid and dimethylamine clusters inside an atmospheric pressure interface time-of-flight mass spectrometer
2022
Abstract. Sulfuric acid and dimethylamine vapours in the atmosphere can form molecular clusters, which participate in new particle formation events. In this work, we have produced, measured, and identified clusters of sulfuric acid and dimethylamine using an electrospray ionizer coupled with a planar-differential mobility analyser, connected to an atmospheric pressure interface time-of-flight mass spectrometer (ESI–DMA–APi-TOF MS). This set-up is suitable for evaluating the extent of fragmentation of the charged clusters inside the instrument. We evaluated the fragmentation of 11 negatively charged clusters both experimentally and using a statistical model based on quantum chemical data. Th…
Orientation and Alignment Echoes
2015
We present one of the simplest classical systems featuring the echo phenomenon---a collection of randomly oriented free rotors with dispersed rotational velocities. Following excitation by a pair of time-delayed impulsive kicks, the mean orientation or alignment of the ensemble exhibits multiple echoes and fractional echoes. We elucidate the mechanism of the echo formation by the kick-induced filamentation of phase space, and provide the first experimental demonstration of classical alignment echoes in a thermal gas of ${\mathrm{CO}}_{2}$ molecules excited by a pair of femtosecond laser pulses.
Ab initio angle- and energy-resolved photoelectron spectroscopy with time-dependent density-functional theory
2012
We present a time-dependent density-functional method able to describe the photoelectron spectrum of atoms and molecules when excited by laser pulses. This computationally feasible scheme is based on a geometrical partitioning that efficiently gives access to photoelectron spectroscopy in time-dependent density-functional calculations. By using a geometrical approach, we provide a simple description of momentum-resolved photoemission including multiphoton effects. The approach is validated by comparison with results in the literature and exact calculations. Furthermore, we present numerical photoelectron angular distributions for randomly oriented nitrogen molecules in a short near-infrared…