Search results for " collisions"
showing 10 items of 516 documents
Forward rapidity isolated photon production in proton-nucleus collisions
2018
We calculate isolated photon production at forward rapidities in proton-nucleus collisions in the Color Glass Condensate framework. Our calculation uses dipole cross sections solved from the running coupling Balitsky-Kovchegov equation with an initial condition fit to deep inelastic scattering data and extended to nuclei with an optical Glauber procedure that introduces no additional parameters beyond the basic nuclear geometry. We present predictions for future forward RHIC and LHC measurements. The predictions are also compared to updated results for the nuclear modification factors for pion production, Drell-Yan dileptons and $J/\psi$ mesons in the same forward kinematics, consistently c…
Unveiling the strong interaction among hadrons at the LHC
2020
One of the key challenges for nuclear physics today is to understand from first principles the effective interaction between hadrons with different quark content. First successes have been achieved using techniques that solve the dynamics of quarks and gluons on discrete space-time lattices1,2. Experimentally, the dynamics of the strong interaction have been studied by scattering hadrons off each other. Such scattering experiments are difficult or impossible for unstable hadrons3–6 and so high-quality measurements exist only for hadrons containing up and down quarks7. Here we demonstrate that measuring correlations in the momentum space between hadron pairs8–12 produced in ultrarelativistic…
Evaluating the citywide Edinburgh 20mph speed limit intervention effects on traffic speed and volume: A pre-post observational evaluation.
2021
Objectives Traffic speed is important to public health as it is a major contributory factor to collision risk and casualty severity. 20mph (32km/h) speed limit interventions are an increasingly common approach to address this transport and health challenge, but a more developed evidence base is needed to understand their effects. This study describes the changes in traffic speed and traffic volume in the City of Edinburgh, pre- and 12 months post-implementation of phased city-wide 20mph speed limits from 2016–2018. Methods The City of Edinburgh Council collected speed and volume data across one full week (24 hours a day) pre- and post-20mph speed limits for 66 streets. The pre- and post-sp…
First Observation of an Attractive Interaction between a Proton and a Cascade Baryon
2019
Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. This Letter presents the first experimental observation of the attractive strong interaction between a proton and a multistrange baryon (hyperon) Ξ−. The result is extracted from two-particle correlations of combined p−Ξ−⊕¯p−¯Ξ+ pairs measured in p−Pb collisions at √sNN=5.02 TeV at the LHC with ALICE. The measured correlation function is compared with the prediction obtained assuming only an attractive Coulomb interaction and a stand…
Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb–Pb collisions at √sNN = 2.76 TeV
2018
In ultrarelativistic heavy-ion collisions, the event-by-event variation of the elliptic flow v2 reflects fluctuations in the shape of the initial state of the system. This allows to select events with the same centrality but different initial geometry. This selection technique, Event Shape Engineering, has been used in the analysis of charge-dependent two- and three-particle correlations in Pb–Pb collisions at sNN=2.76 TeV. The two-particle correlator 〈cos(φα−φβ)〉, calculated for different combinations of charges α and β, is almost independent of v2 (for a given centrality), while the three-particle correlator 〈cos(φα+φβ−2Ψ2)〉 scales almost linearly both with the event v2 and charged-part…
Search for new phenomena in final states with large jet multiplicities and missing transverse momentum at s√=8 TeV proton-proton collisions using the…
2013
A search is presented for new particles decaying to large numbers (7 or more) of jets, with missing transverse momentum and no isolated electrons or muons. This analysis uses 20.3 fb[superscript −1] of pp collision data at s√ = 8 TeV collected by the ATLAS experiment at the Large Hadron Collider. The sensitivity of the search is enhanced by considering the number of b-tagged jets and the scalar sum of masses of large-radius jets in an event. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of various simplified supersymmetry-inspired models where gluinos are pair produced, as well as an mSUGRA/CMSSM model.
Combination of the top-quark mass measurements from the Tevatron collider
2012
Aaltonen, T. et al.
Higgs boson studies at the Tevatron
2013
We combine searches by the CDF and D0 Collaborations for the standard model Higgs boson with mass in the range 90-200 GeV/c2 produced in the gluon-gluon fusion, WH, ZH, tt̄H, and vector boson fusion processes, and decaying in the H→bb̄, H→W+W-, H→ZZ, H→τ+τ-, and H→γγ modes. The data correspond to integrated luminosities of up to 10 fb-1 and were collected at the Fermilab Tevatron in pp̄ collisions at √s=1.96 TeV. The searches are also interpreted in the context of fermiophobic and fourth generation models. We observe a significant excess of events in the mass range between 115 and 140 GeV/c2. The local significance corresponds to 3.0 standard deviations at mH=125 GeV/c2, consistent with the…
Evidence for a Particle Produced in Association with Weak Bosons and Decaying to a Bottom-Antibottom Quark Pair in Higgs Boson Searches at the Tevatr…
2012
Aaltonen, T. et al.
Large-N kinetic theory for highly occupied systems
2018
We consider an effective kinetic description for quantum many-body systems, which is not based on a weak-coupling or diluteness expansion. Instead, it employs an expansion in the number of field components N of the underlying scalar quantum field theory. Extending previous studies, we demonstrate that the large-N kinetic theory at next-to-leading order is able to describe important aspects of highly occupied systems, which are beyond standard perturbative kinetic approaches. We analyze the underlying quasiparticle dynamics by computing the effective scattering matrix elements analytically and solve numerically the large-N kinetic equation for a highly occupied system far from equilibrium. T…