Search results for " combinatorics"
showing 10 items of 296 documents
Galois groups and genetic code
2021
This article was inspired by the inverse problem of Galois theory. Galois groups are realized as number theoretic symmetry groups realized physically in TGD a symmetries of space-time surfaces. Galois confinement as an analog of color confinement is proposed in TGD inspired quantum biology . Galois groups, in particular simple Galois groups, play a fundamental role in the TGD view of cognition. The TGD based model of the genetic code involves in an essential manner the groups A5 (icosahedron), which is the smallest non-abelian simple group, and A4 (tetrahedron). The identification of these groups as Galois groups leads to a more precise view about genetic code. The question why the genetic …
On shortening u-cycles and u-words for permutations
2017
Abstract This paper initiates the study of shortening universal cycles (u-cycles) and universal words (u-words) for permutations either by using incomparable elements, or by using non-deterministic symbols. The latter approach is similar in nature to the recent relevant studies for the de Bruijn sequences. A particular result we obtain in this paper is that u-words for n -permutations exist of lengths n ! + ( 1 − k ) ( n − 1 ) for k = 0 , 1 , … , ( n − 2 ) ! .
Random tensor theory: extending random matrix theory to random product states
2009
We consider a problem in random matrix theory that is inspired by quantum information theory: determining the largest eigenvalue of a sum of p random product states in (C^d)^{otimes k}, where k and p/d^k are fixed while d grows. When k=1, the Marcenko-Pastur law determines (up to small corrections) not only the largest eigenvalue ((1+sqrt{p/d^k})^2) but the smallest eigenvalue (min(0,1-sqrt{p/d^k})^2) and the spectral density in between. We use the method of moments to show that for k>1 the largest eigenvalue is still approximately (1+sqrt{p/d^k})^2 and the spectral density approaches that of the Marcenko-Pastur law, generalizing the random matrix theory result to the random tensor case.…
Homogeneous actions on the random graph
2018
We show that any free product of two countable groups, one of them being infinite, admits a faithful and homogeneous action on the Random Graph. We also show that a large class of HNN extensions or free products, amalgamated over a finite group, admit such an action and we extend our results to groups acting on trees. Finally, we show the ubiquity of finitely generated free dense subgroups of the automorphism group of the Random Graph whose action on it have all orbits infinite.
Maintaining Dynamic Minimum Spanning Trees: An Experimental Study
2010
AbstractWe report our findings on an extensive empirical study on the performance of several algorithms for maintaining minimum spanning trees in dynamic graphs. In particular, we have implemented and tested several variants of the polylogarithmic algorithm by Holm et al., sparsification on top of Frederickson’s algorithm, and other (less sophisticated) dynamic algorithms. In our experiments, we considered as test sets several random, semi-random and worst-case inputs previously considered in the literature together with inputs arising from real-world applications (e.g., a graph of the Internet Autonomous Systems).
A New Class of Searchable and Provably Highly Compressible String Transformations
2019
The Burrows-Wheeler Transform is a string transformation that plays a fundamental role for the design of self-indexing compressed data structures. Over the years, researchers have successfully extended this transformation outside the domains of strings. However, efforts to find non-trivial alternatives of the original, now 25 years old, Burrows-Wheeler string transformation have met limited success. In this paper we bring new lymph to this area by introducing a whole new family of transformations that have all the "myriad virtues" of the BWT: they can be computed and inverted in linear time, they produce provably highly compressible strings, and they support linear time pattern search direc…
Random Stability of an Additive-Quadratic-Quartic Functional Equation
2010
Using the fixed point method, we prove the generalized Hyers-Ulam stability of the following additive-quadratic-quartic functional equation f(x+2y)+f(x−2y)=2f(x+y)+2f(−x−y)+2f(x−y)+2f(y−x)−4f(−x)−2f(x)+f(2y)+f(−2y)−4f(y)−4f(−y) in complete random normed spaces.
Suffix array and Lyndon factorization of a text
2014
Abstract The main goal of this paper is to highlight the relationship between the suffix array of a text and its Lyndon factorization. It is proved in [15] that one can obtain the Lyndon factorization of a text from its suffix array. Conversely, here we show a new method for constructing the suffix array of a text that takes advantage of its Lyndon factorization. The surprising consequence of our results is that, in order to construct the suffix array, the local suffixes inside each Lyndon factor can be separately processed, allowing different implementative scenarios, such as online, external and internal memory, or parallel implementations. Based on our results, the algorithm that we prop…
Radio k-Labelings for Cartesian Products of Graphs
2005
International audience; Frequency planning consists in allocating frequencies to the transmitters of a cellular network so as to ensure that no pair of transmitters interfere. We study the problem of reducing interference by modeling this by a radio k-labeling problem on graphs: For a graph G and an integer k ≥ 1, a radio k-labeling of G is an assignment f of non negative integers to the vertices of G such that |f(x)−f(y)| ≥ k+1−dG(x,y), for any two vertices x and y, where dG(x,y) is the distance between x and y in G. The radio k-chromatic number is the minimum of max{f(x)−f(y):x,y ∈ V(G)} over all radio k-labelings f of G. In this paper we present the radio k-labeling for the Cartesian pro…
A branch-and-cut algorithm for the soft-clustered vehicle-routing problem
2021
Abstract The soft-clustered vehicle-routing problem is a variant of the classical capacitated vehicle-routing problem (CVRP) in which customers are partitioned into clusters and all customers of the same cluster must be served by the same vehicle. We introduce a novel symmetric formulation of the problem in which the clustering part is modeled with an asymmetric sub-model. We solve the new model with a branch-and-cut algorithm exploiting some known valid inequalities for the CVRP that can be adapted. In addition, we derive problem-specific cutting planes and new heuristic and exact separation procedures. For square grid instances in the Euclidean plane, we provide lower-bounding techniques …