Search results for " combinatorics"
showing 10 items of 296 documents
On the tensor degree of finite groups
2013
We study the number of elements $x$ and $y$ of a finite group $G$ such that $x \otimes y= 1_{_{G \otimes G}}$ in the nonabelian tensor square $G \otimes G$ of $G$. This number, divided by $|G|^2$, is called the tensor degree of $G$ and has connection with the exterior degree, introduced few years ago in [P. Niroomand and R. Rezaei, On the exterior degree of finite groups, Comm. Algebra 39 (2011), 335--343]. The analysis of upper and lower bounds of the tensor degree allows us to find interesting structural restrictions for the whole group.
Optimal recovery of a radiating source with multiple frequencies along one line
2020
We study an inverse problem where an unknown radiating source is observed with collimated detectors along a single line and the medium has a known attenuation. The research is motivated by applications in SPECT and beam hardening. If measurements are carried out with frequencies ranging in an open set, we show that the source density is uniquely determined by these measurements up to averaging over levelsets of the integrated attenuation. This leads to a generalized Laplace transform. We also discuss some numerical approaches and demonstrate the results with several examples.
The b-chromatic number of power graphs
2003
The b-chromatic number of a graph G is defined as the maximum number k of colors that can be used to color the vertices of G, such that we obtain a proper coloring and each color i, with 1 ≤ i≤ k, has at least one representant x_i adjacent to a vertex of every color j, 1 ≤ j ≠ i ≤ k. In this paper, we discuss the b-chromatic number of some power graphs. We give the exact value of the b-chromatic number of power paths and power complete binary trees, and we bound the b-chromatic number of power cycles.
A simulation function approach for best proximity point and variational inequality problems
2017
We study sufficient conditions for existence of solutions to the global optimization problem min(x is an element of A) d(x, fx), where A, B are nonempty subsets of a metric space (X, d) and f : A -> B belongs to the class of proximal simulative contraction mappings. Our results unify, improve and generalize various comparable results in the existing literature on this topic. As an application of the obtained theorems, we give some solvability theorems of a variational inequality problem.
Statistical properties of general Markov dynamical sources: applications to information theory
2004
In \textitDynamical sources in information theory: fundamental intervals and word prefixes, B. Vallée studies statistical properties of words generated by dynamical sources. This is done using generalized Ruelle operators. The aim of this article is to generalize sources for which the results hold. First, we avoid the use of Grotendieck theory and Fredholm determinants, this allows dynamical sources that cannot be extended to a complex disk or that are not analytic. Second, we consider Markov sources: the language generated by the source over an alphabet \textbfM is not necessarily \textbfM^*.
Models of the population playing the Rock-Paper-Scissors game
2018
We consider discrete dynamical systems coming from the models of evolution of populations playing rock - paper - scissors game . Asymptotic behaviour of trajectories of these systems is described, occurrence of the Neimark-Sacker bifurcation and nonexistence of time averages are proved.
On modified α-ϕ-fuzzy contractive mappings and an application to integral equations
2016
Abstract We introduce the notion of a modified α-ϕ-fuzzy contractive mapping and prove some results in fuzzy metric spaces for such kind of mappings. The theorems presented provide a generalization of some interesting results in the literature. Two examples and an application to integral equations are given to illustrate the usability of our theory.
Shape optimization for Stokes problem with threshold slip boundary conditions
2017
This paper deals with shape optimization of systems governed by the Stokes flow with threshold slip boundary conditions. The stability of solutions to the state problem with respect to a class of domains is studied. For computational purposes the slip term and impermeability condition are handled by a regularization. To get a finite dimensional optimization problem, the optimized part of the boundary is described by B´ezier polynomials. Numerical examples illustrate the computational efficiency. peerReviewed
On several notions of complexity of polynomial progressions
2021
For a polynomial progression $$(x,\; x+P_1(y),\; \ldots,\; x+P_{t}(y)),$$ we define four notions of complexity: Host-Kra complexity, Weyl complexity, true complexity and algebraic complexity. The first two describe the smallest characteristic factor of the progression, the third one refers to the smallest-degree Gowers norm controlling the progression, and the fourth one concerns algebraic relations between terms of the progressions. We conjecture that these four notions are equivalent, which would give a purely algebraic criterion for determining the smallest Host-Kra factor or the smallest Gowers norm controlling a given progression. We prove this conjecture for all progressions whose ter…
Mean platelet volume in arterial and venous thrombotic disorders
2020
Abstract The mean platelet volume (MPV) is an easy, rapid and inexpensive laboratory parameter which basically mirrors platelet size. Due to the essential role of platelets in hemostasis, many studies have assessed the MPV value in patients with arterial and venous thrombotic disorders. These have then been summarized in some interesting meta-analyses and recent studies that will be discussed in this narrative review. Taken together, the currently available evidence suggests that the MPV may be substantially increased in concomitance with acute episodes of coronary artery disease, venous thromboembolism, portal vein thrombosis, stroke, erectile dysfunction and preeclampsia. In many of these…