Search results for " computer vision."

showing 10 items of 347 documents

Unsupervised Anomaly and Change Detection With Multivariate Gaussianization

2022

Anomaly detection (AD) is a field of intense research in remote sensing (RS) image processing. Identifying low probability events in RS images is a challenging problem given the high dimensionality of the data, especially when no (or little) information about the anomaly is available a priori. While a plenty of methods are available, the vast majority of them do not scale well to large datasets and require the choice of some (very often critical) hyperparameters. Therefore, unsupervised and computationally efficient detection methods become strictly necessary, especially now with the data deluge problem. In this article, we propose an unsupervised method for detecting anomalies and changes …

FOS: Computer and information sciencesComputer Science - Machine LearningMultivariate statisticsComputer sciencebusiness.industryComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern RecognitionFOS: Physical sciencesImage processingPattern recognitionMultivariate normal distributionComputational Physics (physics.comp-ph)Machine Learning (cs.LG)Methodology (stat.ME)Transformation (function)Robustness (computer science)General Earth and Planetary SciencesAnomaly detectionArtificial intelligenceElectrical and Electronic EngineeringbusinessPhysics - Computational PhysicsStatistics - MethodologyChange detectionCurse of dimensionalityIEEE Transactions on Geoscience and Remote Sensing
researchProduct

Extracting Deformation-Aware Local Features by Learning to Deform

2021

Despite the advances in extracting local features achieved by handcrafted and learning-based descriptors, they are still limited by the lack of invariance to non-rigid transformations. In this paper, we present a new approach to compute features from still images that are robust to non-rigid deformations to circumvent the problem of matching deformable surfaces and objects. Our deformation-aware local descriptor, named DEAL, leverages a polar sampling and a spatial transformer warping to provide invariance to rotation, scale, and image deformations. We train the model architecture end-to-end by applying isometric non-rigid deformations to objects in a simulated environment as guidance to pr…

FOS: Computer and information sciencesComputer Science - Machine Learning[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Computer Vision and Pattern Recognition (cs.CV)Computer Science::Computer Vision and Pattern RecognitionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONComputer Science - Computer Vision and Pattern Recognition[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Machine Learning (cs.LG)ComputingMethodologies_COMPUTERGRAPHICS
researchProduct

Deep Non-Line-of-Sight Reconstruction

2020

The recent years have seen a surge of interest in methods for imaging beyond the direct line of sight. The most prominent techniques rely on time-resolved optical impulse responses, obtained by illuminating a diffuse wall with an ultrashort light pulse and observing multi-bounce indirect reflections with an ultrafast time-resolved imager. Reconstruction of geometry from such data, however, is a complex non-linear inverse problem that comes with substantial computational demands. In this paper, we employ convolutional feed-forward networks for solving the reconstruction problem efficiently while maintaining good reconstruction quality. Specifically, we devise a tailored autoencoder architect…

FOS: Computer and information sciencesComputer Science - Machine Learningbusiness.industryComputer scienceComputer Vision and Pattern Recognition (cs.CV)Image and Video Processing (eess.IV)Computer Science - Computer Vision and Pattern RecognitionNonlinear optics020207 software engineering02 engineering and technologyIterative reconstructionInverse problemElectrical Engineering and Systems Science - Image and Video ProcessingAutoencoderRendering (computer graphics)Machine Learning (cs.LG)Non-line-of-sight propagation0202 electrical engineering electronic engineering information engineeringFOS: Electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingComputer visionArtificial intelligencebusiness
researchProduct

Ensemble of Hankel Matrices for Face Emotion Recognition

2015

In this paper, a face emotion is considered as the result of the composition of multiple concurrent signals, each corresponding to the movements of a specific facial muscle. These concurrent signals are represented by means of a set of multi-scale appearance features that might be correlated with one or more concurrent signals. The extraction of these appearance features from a sequence of face images yields to a set of time series. This paper proposes to use the dynamics regulating each appearance feature time series to recognize among different face emotions. To this purpose, an ensemble of Hankel matrices corresponding to the extracted time series is used for emotion classification withi…

FOS: Computer and information sciencesComputer Science - RoboticsComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern RecognitionComputer Science - Human-Computer InteractionRobotics (cs.RO)Human-Computer Interaction (cs.HC)
researchProduct

Multi-Grid Redundant Bounding Box Annotation for Accurate Object Detection

2021

Modern leading object detectors are either two-stage or one-stage networks repurposed from a deep CNN-based backbone classifier network. YOLOv3 is one such very-well known state-of-the-art one-shot detector that takes in an input image and divides it into an equal-sized grid matrix. The grid cell having the center of an object is the one responsible for detecting the particular object. This paper presents a new mathematical approach that assigns multiple grids per object for accurately tight-fit bounding box prediction. We also propose an effective offline copy-paste data augmentation for object detection. Our proposed method significantly outperforms some current state-of-the-art object de…

FOS: Computer and information sciencesComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern Recognition
researchProduct

Eigen-Distortions of Hierarchical Representations

2017

We develop a method for comparing hierarchical image representations in terms of their ability to explain perceptual sensitivity in humans. Specifically, we utilize Fisher information to establish a model-derived prediction of sensitivity to local perturbations of an image. For a given image, we compute the eigenvectors of the Fisher information matrix with largest and smallest eigenvalues, corresponding to the model-predicted most- and least-noticeable image distortions, respectively. For human subjects, we then measure the amount of each distortion that can be reliably detected when added to the image. We use this method to test the ability of a variety of representations to mimic human p…

FOS: Computer and information sciencesComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern Recognition
researchProduct

MOISST: Multimodal Optimization of Implicit Scene for SpatioTemporal calibration

2023

With the recent advances in autonomous driving and the decreasing cost of LiDARs, the use of multimodal sensor systems is on the rise. However, in order to make use of the information provided by a variety of complimentary sensors, it is necessary to accurately calibrate them. We take advantage of recent advances in computer graphics and implicit volumetric scene representation to tackle the problem of multi-sensor spatial and temporal calibration. Thanks to a new formulation of the Neural Radiance Field (NeRF) optimization, we are able to jointly optimize calibration parameters along with scene representation based on radiometric and geometric measurements. Our method enables accurate and …

FOS: Computer and information sciencesComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern Recognition
researchProduct

Surgical Visual Domain Adaptation: Results from the MICCAI 2020 SurgVisDom Challenge

2021

Surgical data science is revolutionizing minimally invasive surgery by enabling context-aware applications. However, many challenges exist around surgical data (and health data, more generally) needed to develop context-aware models. This work - presented as part of the Endoscopic Vision (EndoVis) challenge at the Medical Image Computing and Computer Assisted Intervention (MICCAI) 2020 conference - seeks to explore the potential for visual domain adaptation in surgery to overcome data privacy concerns. In particular, we propose to use video from virtual reality (VR) simulations of surgical exercises in robotic-assisted surgery to develop algorithms to recognize tasks in a clinical-like sett…

FOS: Computer and information sciencesComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern Recognition
researchProduct

Biometric Fish Classification of Temperate Species Using Convolutional Neural Network with Squeeze-and-Excitation

2019

Our understanding and ability to effectively monitor and manage coastal ecosystems are severely limited by observation methods. Automatic recognition of species in natural environment is a promising tool which would revolutionize video and image analysis for a wide range of applications in marine ecology. However, classifying fish from images captured by underwater cameras is in general very challenging due to noise and illumination variations in water. Previous classification methods in the literature relies on filtering the images to separate the fish from the background or sharpening the images by removing background noise. This pre-filtering process may negatively impact the classificat…

FOS: Computer and information sciencesComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern RecognitionVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Annen informasjonsteknologi: 559
researchProduct

Combination of Hidden Markov Random Field and Conjugate Gradient for Brain Image Segmentation

2017

Image segmentation is the process of partitioning the image into significant regions easier to analyze. Nowadays, segmentation has become a necessity in many practical medical imaging methods as locating tumors and diseases. Hidden Markov Random Field model is one of several techniques used in image segmentation. It provides an elegant way to model the segmentation process. This modeling leads to the minimization of an objective function. Conjugate Gradient algorithm (CG) is one of the best known optimization techniques. This paper proposes the use of the Conjugate Gradient algorithm (CG) for image segmentation, based on the Hidden Markov Random Field. Since derivatives are not available fo…

FOS: Computer and information sciencesComputer Vision and Pattern Recognition (cs.CV)Computer Science::Computer Vision and Pattern RecognitionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONComputer Science - Computer Vision and Pattern Recognition
researchProduct