Search results for " convergence"
showing 10 items of 260 documents
Regularity of solutions of cauchy problems with smooth cauchy data
1988
The Cauchy problem for linear growth functionals
2003
In this paper we are interested in the Cauchy problem $$ \left\{ \begin{gathered} \frac{{\partial u}}{{\partial t}} = div a (x, Du) in Q = (0,\infty ) x {\mathbb{R}^{{N }}} \hfill \\ u (0,x) = {u_{0}}(x) in x \in {\mathbb{R}^{N}}, \hfill \\ \end{gathered} \right. $$ (1.1) where \( {u_{0}} \in L_{{loc}}^{1}({\mathbb{R}^{N}}) \) and \( a(x,\xi ) = {\nabla _{\xi }}f(x,\xi ),f:{\mathbb{R}^{N}}x {\mathbb{R}^{N}} \to \mathbb{R} \)being a function with linear growth as ‖ξ‖ satisfying some additional assumptions we shall precise below. An example of function f(x, ξ) covered by our results is the nonparametric area integrand \( f(x,\xi ) = \sqrt {{1 + {{\left\| \xi \right\|}^{2}}}} \); in this case …
LE AREE INTERNE PER LO SVILUPPO DEL TERRITORIO E LA COMPLEMENTARITÀ DI PROGRAMMI E STRUMENTI FRA LE POLITICHE EUROPEE DI SVILUPPO RURALE E DI COESIONE
Le Aree Interne rappresentano un tema particolarmente importante per la programmazione e la spesa dei fondi comunitari nel periodo 2014-2020 perché costituiscono il più grande esempio di complementarità fra le Politiche europee di sviluppo rurale e di coesione. Per lo sviluppo di queste Aree è stata creata una Strategia Nazionale per le Aree Interne (SNAI) che mira alla valorizzazione ed al recupero di tutti quei territori (rurali, montuosi, svantaggiati) dal carattere marginale rispetto alla disponibilità e all’offerta di servizi essenziali. La peculiarità di tale Strategia è quella di promuovere lo sviluppo di aree che sono uniformemente distribuite in tutto il comprensorio nazionale a di…
Approximation of piecewise smooth functions and images by edge-adapted (ENO-EA) nonlinear multiresolution techniques
2008
Abstract This paper introduces and analyzes new approximation procedures for bivariate functions. These procedures are based on an edge-adapted nonlinear reconstruction technique which is an intrinsically two-dimensional extension of the essentially non-oscillatory and subcell resolution techniques introduced in the one-dimensional setting by Harten and Osher. Edge-adapted reconstructions are tailored to piecewise smooth functions with geometrically smooth edge discontinuities, and are therefore attractive for applications such as image compression and shock computations. The local approximation order is investigated both in L p and in the Hausdorff distance between graphs. In particular, i…
Optimal rates of convergence for persistence diagrams in Topological Data Analysis
2013
Computational topology has recently known an important development toward data analysis, giving birth to the field of topological data analysis. Topological persistence, or persistent homology, appears as a fundamental tool in this field. In this paper, we study topological persistence in general metric spaces, with a statistical approach. We show that the use of persistent homology can be naturally considered in general statistical frameworks and persistence diagrams can be used as statistics with interesting convergence properties. Some numerical experiments are performed in various contexts to illustrate our results.
Global convergence and rate of convergence of a method of centers
1994
We consider a method of centers for solving constrained optimization problems. We establish its global convergence and that it converges with a linear rate when the starting point of the algorithm is feasible as well as when the starting point is infeasible. We demonstrate the effect of the scaling on the rate of convergence. We extend afterwards, the stability result of [5] to the infeasible case anf finally, we give an application to semi-infinite optimization problems.
The rate of multiplicity of the roots of nonlinear equations and its application to iterative methods
2015
Nonsimple roots of nonlinear equations present some challenges for classic iterative methods, such as instability or slow, if any, convergence. As a consequence, they require a greater computational cost, depending on the knowledge of the order of multiplicity of the roots. In this paper, we introduce dimensionless function, called rate of multiplicity, which estimates the order of multiplicity of the roots, as a dynamic global concept, in order to accelerate iterative processes. This rate works not only with integer but also fractional order of multiplicity and even with poles (negative order of multiplicity).
On finite element approximation of the gradient for solution of Poisson equation
1981
A nonconforming mixed finite element method is presented for approximation of ?w with Δw=f,w| r =0. Convergence of the order $$\left\| {\nabla w - u_h } \right\|_{0,\Omega } = \mathcal{O}(h^2 )$$ is proved, when linear finite elements are used. Only the standard regularity assumption on triangulations is needed.
Iterative approximation to a coincidence point of two mappings
2015
In this article two methods for approximating the coincidence point of two mappings are studied and moreover, rates of convergence for both methods are given. These results are illustrated by several examples, in particular we apply such results to study the convergence and their rate of convergence of these methods to the solution of a nonlinear integral equation and of a nonlinear differential equation.
Maximale Konvergenzordnung bei der numerischen Lösung von Anfangswertproblemen mit Splines
1982
In [10] a general procedureV is presented to obtain spline approximations by collocation for the solutions of initial value problems for first order ordinary differential equations. In this paper the attainable order of convergence with respect to the maximum norm is characterized in dependence of the parameters involved inV; in particular the appropriate choice of the collocation points is considered.