6533b7d7fe1ef96bd12683b0
RESEARCH PRODUCT
On finite element approximation of the gradient for solution of Poisson equation
Pekka NeittaanmäkiJ. Saranensubject
Computational MathematicsRate of convergenceApplied MathematicsMathematical analysisOrder (ring theory)Mixed finite element methodNabla symbolSuperconvergencePoisson's equationFinite element methodMathematicsExtended finite element methoddescription
A nonconforming mixed finite element method is presented for approximation of ?w with Δw=f,w| r =0. Convergence of the order $$\left\| {\nabla w - u_h } \right\|_{0,\Omega } = \mathcal{O}(h^2 )$$ is proved, when linear finite elements are used. Only the standard regularity assumption on triangulations is needed.
year | journal | country | edition | language |
---|---|---|---|---|
1981-10-01 | Numerische Mathematik |