Search results for " data structure."
showing 10 items of 88 documents
Algorithms for Anti-Powers in Strings
2018
Abstract A string S [ 1 , n ] is a power (or tandem repeat) of order k and period n / k if it can be decomposed into k consecutive equal-length blocks of letters. Powers and periods are fundamental to string processing, and algorithms for their efficient computation have wide application and are heavily studied. Recently, Fici et al. (Proc. ICALP 2016) defined an anti-power of order k to be a string composed of k pairwise-distinct blocks of the same length ( n / k , called anti-period). Anti-powers are a natural converse to powers, and are objects of combinatorial interest in their own right. In this paper we initiate the algorithmic study of anti-powers. Given a string S, we describe an op…
Time and space efficient quantum algorithms for detecting cycles and testing bipartiteness
2016
We study space and time efficient quantum algorithms for two graph problems -- deciding whether an $n$-vertex graph is a forest, and whether it is bipartite. Via a reduction to the s-t connectivity problem, we describe quantum algorithms for deciding both properties in $\tilde{O}(n^{3/2})$ time and using $O(\log n)$ classical and quantum bits of storage in the adjacency matrix model. We then present quantum algorithms for deciding the two properties in the adjacency array model, which run in time $\tilde{O}(n\sqrt{d_m})$ and also require $O(\log n)$ space, where $d_m$ is the maximum degree of any vertex in the input graph.
Span-program-based quantum algorithm for the rank problem
2011
Recently, span programs have been shown to be equivalent to quantum query algorithms. It is an open problem whether this equivalence can be utilized in order to come up with new quantum algorithms. We address this problem by providing span programs for some linear algebra problems. We develop a notion of a high level span program, that abstracts from loading input vectors into a span program. Then we give a high level span program for the rank problem. The last section of the paper deals with reducing a high level span program to an ordinary span program that can be solved using known quantum query algorithms.
Table Compression
2016
Data Compression Techniques for massive tables are described. Related methodological results are also presented.
Repetitiveness Measures based on String Attractors and Burrows-Wheeler Transform: Properties and Applications
2023
Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations
2010
We present two new quantum algorithms. Our first algorithm is a generalization of amplitude amplification to the case when parts of the quantum algorithm that is being amplified stop at different times. Our second algorithm uses the first algorithm to improve the running time of Harrow et al. algorithm for solving systems of linear equations from O(kappa^2 log N) to O(kappa log^3 kappa log N) where \kappa is the condition number of the system of equations.
On the Complexity of Solving Subtraction Games
2018
We study algorithms for solving Subtraction games, which sometimes are referred to as one-heap Nim games. We describe a quantum algorithm which is applicable to any game on DAG, and show that its query compexity for solving an arbitrary Subtraction game of $n$ stones is $O(n^{3/2}\log n)$. The best known deterministic algorithms for solving such games are based on the dynamic programming approach. We show that this approach is asymptotically optimal and that classical query complexity for solving a Subtraction game is generally $\Theta(n^2)$. This paper perhaps is the first explicit "quantum" contribution to algorithmic game theory.
Whom to befriend to influence people
2020
Alice wants to join a new social network, and influence its members to adopt a new product or idea. Each person $v$ in the network has a certain threshold $t(v)$ for {\em activation}, i.e adoption of the product or idea. If $v$ has at least $t(v)$ activated neighbors, then $v$ will also become activated. If Alice wants to activate the entire social network, whom should she befriend? More generally, we study the problem of finding the minimum number of links that a set of external influencers should form to people in the network, in order to activate the entire social network. This {\em Minimum Links} Problem has applications in viral marketing and the study of epidemics. Its solution can be…
Identifying the k Best Targets for an Advertisement Campaign via Online Social Networks
2020
We propose a novel approach for the recommendation of possible customers (users) to advertisers (e.g., brands) based on two main aspects: (i) the comparison between On-line Social Network profiles, and (ii) neighborhood analysis on the On-line Social Network. Profile matching between users and brands is considered based on bag-of-words representation of textual contents coming from the social media, and measures such as the Term Frequency-Inverse Document Frequency are used in order to characterize the importance of words in the comparison. The approach has been implemented relying on Big Data Technologies, allowing this way the efficient analysis of very large Online Social Networks. Resul…
Inducing the Lyndon Array
2019
In this paper we propose a variant of the induced suffix sorting algorithm by Nong (TOIS, 2013) that computes simultaneously the Lyndon array and the suffix array of a text in $O(n)$ time using $\sigma + O(1)$ words of working space, where $n$ is the length of the text and $\sigma$ is the alphabet size. Our result improves the previous best space requirement for linear time computation of the Lyndon array. In fact, all the known linear algorithms for Lyndon array computation use suffix sorting as a preprocessing step and use $O(n)$ words of working space in addition to the Lyndon array and suffix array. Experimental results with real and synthetic datasets show that our algorithm is not onl…