6533b82bfe1ef96bd128d880
RESEARCH PRODUCT
Algorithms for Anti-Powers in Strings
Golnaz BadkobehSimon PuglisiGabriele Ficisubject
FOS: Computer and information sciencesDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)ComputationComputer Science - Formal Languages and Automata Theory0102 computer and information sciencesString processingInformation System01 natural sciencesUpper and lower boundsAnti-powersTheoretical Computer ScienceLemma (logic)ConverseComputer Science - Data Structures and AlgorithmsData Structures and Algorithms (cs.DS)0101 mathematicsMathematicsCombinatorics on wordSignal processingCombinatorics on wordsComputer Science Applications1707 Computer Vision and Pattern RecognitionAnti-power16. Peace & justice113 Computer and information sciencesSubstringComputer Science Applications010101 applied mathematicsAlgorithmCombinatorics on words010201 computation theory & mathematicsSignal ProcessingAlgorithmAlgorithmsInformation SystemsComputer Science - Discrete Mathematicsdescription
Abstract A string S [ 1 , n ] is a power (or tandem repeat) of order k and period n / k if it can be decomposed into k consecutive equal-length blocks of letters. Powers and periods are fundamental to string processing, and algorithms for their efficient computation have wide application and are heavily studied. Recently, Fici et al. (Proc. ICALP 2016) defined an anti-power of order k to be a string composed of k pairwise-distinct blocks of the same length ( n / k , called anti-period). Anti-powers are a natural converse to powers, and are objects of combinatorial interest in their own right. In this paper we initiate the algorithmic study of anti-powers. Given a string S, we describe an optimal algorithm for locating all substrings of S that are anti-powers of a specified order. The optimality of the algorithm follows form a combinatorial lemma that provides a lower bound on the number of distinct anti-powers of a given order: we prove that a string of length n can contain Θ ( n 2 / k ) distinct anti-powers of order k.
year | journal | country | edition | language |
---|---|---|---|---|
2018-09-01 |