0000000000051979
AUTHOR
Golnaz Badkobeh
Binary jumbled string matching for highly run-length compressible texts
The Binary Jumbled String Matching problem is defined as: Given a string $s$ over $\{a,b\}$ of length $n$ and a query $(x,y)$, with $x,y$ non-negative integers, decide whether $s$ has a substring $t$ with exactly $x$ $a$'s and $y$ $b$'s. Previous solutions created an index of size O(n) in a pre-processing step, which was then used to answer queries in constant time. The fastest algorithms for construction of this index have running time $O(n^2/\log n)$ [Burcsi et al., FUN 2010; Moosa and Rahman, IPL 2010], or $O(n^2/\log^2 n)$ in the word-RAM model [Moosa and Rahman, JDA 2012]. We propose an index constructed directly from the run-length encoding of $s$. The construction time of our index i…
Constructing Antidictionaries of Long Texts in Output-Sensitive Space
AbstractA wordxthat is absent from a wordyis calledminimalif all its proper factors occur iny. Given a collection ofkwordsy1, … ,ykover an alphabetΣ, we are asked to compute the set$\mathrm {M}^{\ell }_{\{y_1,\ldots ,y_k\}}$M{y1,…,yk}ℓof minimal absent words of length at mostℓof the collection {y1, … ,yk}. The set$\mathrm {M}^{\ell }_{\{y_1,\ldots ,y_k\}}$M{y1,…,yk}ℓcontains all the wordsxsuch thatxis absent from all the words of the collection while there existi,j, such that the maximal proper suffix ofxis a factor ofyiand the maximal proper prefix ofxis a factor ofyj. In data compression, this corresponds to computing the antidictionary ofkdocuments. In bioinformatics, it corresponds to c…
Maximal Closed Substrings
A string is closed if it has length 1 or has a nonempty border without internal occurrences. In this paper we introduce the definition of a maximal closed substring (MCS), which is an occurrence of a closed substring that cannot be extended to the left nor to the right into a longer closed substring. MCSs with exponent at least 2 are commonly called runs; those with exponent smaller than 2, instead, are particular cases of maximal gapped repeats. We show that a string of length n contains O(n1.5) MCSs. We also provide an output-sensitive algorithm that, given a string of length n over a constant-size alphabet, locates all m MCSs the string contains in O(nlog n+ m) time.
Constructing Antidictionaries in Output-Sensitive Space
A word $x$ that is absent from a word $y$ is called minimal if all its proper factors occur in $y$. Given a collection of $k$ words $y_1,y_2,\ldots,y_k$ over an alphabet $\Sigma$, we are asked to compute the set $\mathrm{M}^{\ell}_{y_{1}\#\ldots\#y_{k}}$ of minimal absent words of length at most $\ell$ of word $y=y_1\#y_2\#\ldots\#y_k$, $\#\notin\Sigma$. In data compression, this corresponds to computing the antidictionary of $k$ documents. In bioinformatics, it corresponds to computing words that are absent from a genome of $k$ chromosomes. This computation generally requires $\Omega(n)$ space for $n=|y|$ using any of the plenty available $\mathcal{O}(n)$-time algorithms. This is because a…
Algorithms for Anti-Powers in Strings
Abstract A string S [ 1 , n ] is a power (or tandem repeat) of order k and period n / k if it can be decomposed into k consecutive equal-length blocks of letters. Powers and periods are fundamental to string processing, and algorithms for their efficient computation have wide application and are heavily studied. Recently, Fici et al. (Proc. ICALP 2016) defined an anti-power of order k to be a string composed of k pairwise-distinct blocks of the same length ( n / k , called anti-period). Anti-powers are a natural converse to powers, and are objects of combinatorial interest in their own right. In this paper we initiate the algorithmic study of anti-powers. Given a string S, we describe an op…
On the Number of Closed Factors in a Word
A closed word (a.k.a. periodic-like word or complete first return) is a word whose longest border does not have internal occurrences, or, equivalently, whose longest repeated prefix is not right special. We investigate the structure of closed factors of words. We show that a word of length $n$ contains at least $n+1$ distinct closed factors, and characterize those words having exactly $n+1$ closed factors. Furthermore, we show that a word of length $n$ can contain $\Theta(n^{2})$ many distinct closed factors.