6533b7defe1ef96bd12768ac

RESEARCH PRODUCT

Constructing Antidictionaries in Output-Sensitive Space

Golnaz BadkobehAlice HéliouGabriele FiciSolon P. PissisLorraine A.k. Ayad

subject

FOS: Computer and information sciencesSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniOutput sensitive algorithmsString algorithmsPhysicsAntidictionarieSettore INF/01 - InformaticaOutput sensitive algorithm0102 computer and information sciencesAbsent wordsSpace (mathematics)01 natural sciencesAntidictionariesCombinatorics010201 computation theory & mathematicsTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYData compressionComputer Science - Data Structures and AlgorithmsData Structures and Algorithms (cs.DS)Computer Science::Symbolic Computation[INFO]Computer Science [cs]Absent wordAlphabetWord (group theory)

description

A word $x$ that is absent from a word $y$ is called minimal if all its proper factors occur in $y$. Given a collection of $k$ words $y_1,y_2,\ldots,y_k$ over an alphabet $\Sigma$, we are asked to compute the set $\mathrm{M}^{\ell}_{y_{1}\#\ldots\#y_{k}}$ of minimal absent words of length at most $\ell$ of word $y=y_1\#y_2\#\ldots\#y_k$, $\#\notin\Sigma$. In data compression, this corresponds to computing the antidictionary of $k$ documents. In bioinformatics, it corresponds to computing words that are absent from a genome of $k$ chromosomes. This computation generally requires $\Omega(n)$ space for $n=|y|$ using any of the plenty available $\mathcal{O}(n)$-time algorithms. This is because an $\Omega(n)$-sized text index is constructed over $y$ which can be impractical for large $n$. We do the identical computation incrementally using output-sensitive space. This goal is reasonable when $||\mathrm{M}^{\ell}_{y_{1}\#\ldots\#y_{N}}||=o(n)$, for all $N\in[1,k]$. For instance, in the human genome, $n \approx 3\times 10^9$ but $||\mathrm{M}^{12}_{y_{1}\#\ldots\#y_{k}}|| \approx 10^6$. We consider a constant-sized alphabet for stating our results. We show that all $\mathrm{M}^{\ell}_{y_{1}},\ldots,\mathrm{M}^{\ell}_{y_{1}\#\ldots\#y_{k}}$ can be computed in $\mathcal{O}(kn+\sum^{k}_{N=1}||\mathrm{M}^{\ell}_{y_{1}\#\ldots\#y_{N}}||)$ total time using $\mathcal{O}(\mathrm{MaxIn}+\mathrm{MaxOut})$ space, where $\mathrm{MaxIn}$ is the length of the longest word in $\{y_1,\ldots,y_{k}\}$ and $\mathrm{MaxOut}=\max\{||\mathrm{M}^{\ell}_{y_{1}\#\ldots\#y_{N}}||:N\in[1,k]\}$. Proof-of-concept experimental results are also provided confirming our theoretical findings and justifying our contribution.

https://doi.org/10.1109/dcc.2019.00062